4 resultados para Strong Absorbers
em Digital Commons at Florida International University
Resumo:
This study is to theoretically investigate shockwave and microbubble formation due to laser absorption by microparticles and nanoparticles. The initial motivation for this research was to understand the underlying physical mechanisms responsible for laser damage to the retina, as well as the predict threshold levels for damage for laser pulses with of progressively shorter durations. The strongest absorbers in the retina are micron size melanosomes, and their absorption of laser light causes them to accrue very high energy density. I theoretically investigate how this absorbed energy is transferred to the surrounding medium. For a wide range of conditions I calculate shockwave generation and bubble growth as a function of the three parameters; fluence, pulse duration and pulse shape. In order to develop a rigorous physical treatment, the governing equations for the behavior of an absorber and for the surrounding medium are derived. Shockwave theory is investigated and the conclusion is that a shock pressure explanation is likely to be the underlying physical cause of retinal damage at threshold fluences for sub-nanosecond pulses. The same effects are also expected for non-biological micro and nano absorbers. ^
Resumo:
This dissertation examines the quality of hazard mitigation elements in a coastal, hazard prone state. I answer two questions. First, in a state with a strong mandate for hazard mitigation elements in comprehensive plans, does plan quality differ among county governments? Second, if such variation exists, what drives this variation? My research focuses primarily on Florida's 35 coastal counties, which are all at risk for hurricane and flood hazards, and all fall under Florida's mandate to have a comprehensive plan that includes a hazard mitigation element. Research methods included document review to rate the hazard mitigation elements of all 35 coastal county plans and subsequent analysis against demographic and hazard history factors. Following this, I conducted an electronic, nationwide survey of planning professionals and academics, informed by interviews of planning leaders in Florida counties. I found that hazard mitigation element quality varied widely among the 35 Florida coastal counties, but were close to a normal distribution. No plans were of exceptionally high quality. Overall, historical hazard effects did not correlate with hazard mitigation element quality, but some demographic variables that are associated with urban populations did. The variance in hazard mitigation element quality indicates that while state law may mandate, and even prescribe, hazard mitigation in local comprehensive plans, not all plans will result in equal, or even adequate, protection for people. Furthermore, the mixed correlations with demographic variables representing social and disaster vulnerability shows that, at least at the county level, vulnerability to hazards does not have a strong effect on hazard mitigation element quality. From a theory perspective, my research is significant because it compares assumptions about vulnerability based on hazard history and demographics to plan quality. The only vulnerability-related variables that appeared to correlate, and at that mildly so, with hazard mitigation element quality, were those typically representing more urban areas. In terms of the theory of Neo-Institutionalism and theories related to learning organizations, my research shows that planning departments appear to have set norms and rules of operating that preclude both significant public involvement and learning from prior hazard events.
Resumo:
This dissertation examines the quality of hazard mitigation elements in a coastal, hazard prone state. I answer two questions. First, in a state with a strong mandate for hazard mitigation elements in comprehensive plans, does plan quality differ among county governments? Second, if such variation exists, what drives this variation? My research focuses primarily on Florida’s 35 coastal counties, which are all at risk for hurricane and flood hazards, and all fall under Florida’s mandate to have a comprehensive plan that includes a hazard mitigation element. Research methods included document review to rate the hazard mitigation elements of all 35 coastal county plans and subsequent analysis against demographic and hazard history factors. Following this, I conducted an electronic, nationwide survey of planning professionals and academics, informed by interviews of planning leaders in Florida counties. I found that hazard mitigation element quality varied widely among the 35 Florida coastal counties, but were close to a normal distribution. No plans were of exceptionally high quality. Overall, historical hazard effects did not correlate with hazard mitigation element quality, but some demographic variables that are associated with urban populations did. The variance in hazard mitigation element quality indicates that while state law may mandate, and even prescribe, hazard mitigation in local comprehensive plans, not all plans will result in equal, or even adequate, protection for people. Furthermore, the mixed correlations with demographic variables representing social and disaster vulnerability shows that, at least at the county level, vulnerability to hazards does not have a strong effect on hazard mitigation element quality. From a theory perspective, my research is significant because it compares assumptions about vulnerability based on hazard history and demographics to plan quality. The only vulnerability-related variables that appeared to correlate, and at that mildly so, with hazard mitigation element quality, were those typically representing more urban areas. In terms of the theory of Neo-Institutionalism and theories related to learning organizations, my research shows that planning departments appear to have set norms and rules of operating that preclude both significant public involvement and learning from prior hazard events.