3 resultados para Stem water potential

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schinus terebinthifolius Raddi (Schinus) is one of the most widely found woody exotic species in South Florida. This exotic is distributed across environments with different hydrologic regimes, from upland pine forests to the edges of sawgrass marshes and into saline mangrove forests. To determine if this invasive exotic had different physiological attributes compared to native species in a coastal habitat, we measured predawn xylem water potentials (Ψ), oxygen stable isotope signatures (δ18O), and sodium (Na+) and potassium (K+) contents of sap water from plants within: (1) a transition zone (between a mangrove forest and upland pineland) and (2) an upland pineland in Southwest Florida. Under dynamic salinity and hydrologic conditions, Ψ of Schinus appeared less subject to fluctuations caused by seasonality when compared with native species. Although stem water δ18O values could not be used to distinguish the depth of Schinus and native species' water uptake in the transition zone, Ψ and sap Na+/K+ patterns showed that Schinus was less of a salt excluder relative to the native upland species during the dry season. This exotic also exhibited Na+/K+ ratios similar to the mangrove species, indicating some salinity tolerance. In the upland pineland, Schinus water uptake patterns were not significantly different from those of native species. Differences between Schinus and native upland species, however, may provide this exotic an advantage over native species within mangrove transition zones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Equisetum giganteum L., a giant horsetail, is one of the largest living members of an ancient group of non-flowering plants with a history extending back 377 million years. Its hollow upright stems grow to over 5 m in height. Equisetum giganteum occupies a wide range of habitats in southern South America. Colonies of this horsetail occupy large areas of the Atacama river valleys, including those with sufficiently high groundwater salinity to significantly reduce floristic diversity. The purpose of this research was to study the ecophysiological and biomechanical properties that allow E. giganteum to successfully colonize a range of habitats, varying in salinity and exposure. Stem ecophysiological behavior was measured via steady state porometry (stomatal conductance), thermocouple psychrometry (water potential), chlorophyll fluorescence, and ion specific electrodes (xylem fluid solutes). Stem biomechanical properties were measured via a 3-point bending apparatus and cross sectional imaging. Equisetum giganteum stems exhibit mechanical characteristics of semi-self-supporting plants, requiring mutual support or support of other vegetation when they grow tall. The mean elastic moduli (4.3 Chile, 4.0 Argentina) of E. giganteum in South America is by far the largest measured in any living horsetail. Stomatal behavior of E. giganteum is consistent with that of typical C3 vascular plants, although absolute values of maximum late morning stomatal conductance are very low in comparison to typical plants from mesic habitats. The internode stomata exhibit strong light response. However, the environmental sensitivity of stomatal conductance appeared less in young developing stems, possibly due to higher cuticular conductance. Exclusion of sodium (Na) and preferential accumulation of potassium (K) at the root level appears to be the key mechanism of salinity tolerance in E. giganteum. Overall stomatal conductance and chlorophyll fluorescence were little affected by salinity, ranging from very low levels up to half strength seawater. This suggests a high degree of salinity stress tolerance. The capacity of E. giganteum to adapt to a wide variety of environments in southern South America has allowed it to thrive despite tremendous environmental changes during their long tenure on Earth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxygen atoms within fossil wood provide high-resolution records of climate change, particularly for the Quaternary. However, current analysis methods of fossil cellulose do not differentiate between different positions of the oxygen atoms. Here, we propose a refinement to tree-cellulose paleoclimatology modeling, using the cellulose-derived compound phenylglucosazone as the isotopic substrate. Stem samples from trees were collected at northern latitudes as low as 24°37′N and as high as 69°00′N. We extracted stem water and cellulose from each stem sample and analyzed them for their 18O content. In addition, we derived the cellulose to phenylglucosazone, a compound which lacks the oxygen attached to the second carbon of the cellulose–glucose moieties. Oxygen isotope analysis of phenylglucosazone allowed us to calculate the 18O content of the oxygen attached to the second carbon of the cellulose–glucose moieties. By way of these analyses, we tested two hypotheses: first, that the 18O content of the oxygen attached to second carbon will more closely reflect the 18O content of the stem water, and will not resemble the 18O content of either cellulose or its derivative phenylglucosazone. Second, tree-ring models that incorporate the variable oxygen isotope fractionation shown here and elsewhere are more accurate than those that do not. Our first hypothesis was rejected on the basis that the oxygen isotope ratios of the oxygen attached to the second carbon of the glucose moieties had a noisy isotopic signal with a large standard deviation and gave the poorest correlation with the oxygen isotope ratios of stem water. Related to this isotopic noise, we observed that the correlation between oxygen isotope ratios of phenylglucosazone with both stem water and relative humidity were higher than those observed for cellulose. Our hypothesis about tree-ring models which account for changes in the oxygen isotopic fractionation during cellulose synthesis was consistent only for the 18O content of phenylglucosazone. We showed that the tree-ring model based on the 18O content of phenylglucosazone was an improvement over existing models that are based on whole cellulose. Additionally, this approach may be used in other cellulose based archives such as peat deposits and lacustrine sediments.