4 resultados para Statistical tools
em Digital Commons at Florida International University
Resumo:
For children with intractable seizures, surgical removal of epileptic foci, if identifiable and feasible, can be an effective way to reduce or eliminate seizures. The success of this type of surgery strongly hinges upon the ability to identify and demarcate those epileptic foci. The ultimate goal of this research project is to develop an effective technology for detection of unique in vivo pathophysiological characteristics of epileptic cortex and, subsequently, to use this technology to guide epilepsy surgery intraoperatively. In this PhD dissertation the feasibility of using optical spectroscopy to identify uniquein vivo pathophysiological characteristics of epileptic cortex was evaluated and proven using the data collected from children undergoing epilepsy surgery. ^ In this first in vivo human study, static diffuse reflectance and fluorescence spectra were measured from the epileptic cortex, defined by intraoperative ECoG, and its surrounding tissue from pediatric patients undergoing epilepsy surgery. When feasible, biopsy samples were taken from the investigated sites for the subsequent histological analysis. Using the histological data as the gold standard, spectral data was analyzed with statistical tools. The results of the analysis show that static diffuse reflectance spectroscopy and its combination with static fluorescence spectroscopy can be used to effectively differentiate between epileptic cortex with histopathological abnormalities and normal cortex in vivo with a high degree of accuracy. ^ To maximize the efficiency of optical spectroscopy in detecting and localizing epileptic cortex intraoperatively, the static system was upgraded to investigate histopathological abnormalities deep within the epileptic cortex, as well as to detect unique temporal pathophysiological characteristics of epileptic cortex. Detection of deep abnormalities within the epileptic cortex prompted a redesign of the fiberoptic probe. A mechanical probe holder was also designed and constructed to maintain the probe contact pressure and contact point during the time dependent measurements. The dynamic diffuse reflectance spectroscopy system was used to characterize in vivo pediatric epileptic cortex. The results of the study show that some unique wavelength dependent temporal characteristics (e.g., multiple horizontal bands in the correlation coefficient map γ(λref = 800 nm, λcomp ,t)) can be found in the time dependent recordings of diffuse reflectance spectra from epileptic cortex defined by ECoG.^
Resumo:
The physics of self-organization and complexity is manifested on a variety of biological scales, from large ecosystems to the molecular level. Protein molecules exhibit characteristics of complex systems in terms of their structure, dynamics, and function. Proteins have the extraordinary ability to fold to a specific functional three-dimensional shape, starting from a random coil, in a biologically relevant time. How they accomplish this is one of the secrets of life. In this work, theoretical research into understanding this remarkable behavior is discussed. Thermodynamic and statistical mechanical tools are used in order to investigate the protein folding dynamics and stability. Theoretical analyses of the results from computer simulation of the dynamics of a four-helix bundle show that the excluded volume entropic effects are very important in protein dynamics and crucial for protein stability. The dramatic effects of changing the size of sidechains imply that a strategic placement of amino acid residues with a particular size may be an important consideration in protein engineering. Another investigation deals with modeling protein structural transitions as a phase transition. Using finite size scaling theory, the nature of unfolding transition of a four-helix bundle protein was investigated and critical exponents for the transition were calculated for various hydrophobic strengths in the core. It is found that the order of the transition changes from first to higher order as the strength of the hydrophobic interaction in the core region is significantly increased. Finally, a detailed kinetic and thermodynamic analysis was carried out in a model two-helix bundle. The connection between the structural free-energy landscape and folding kinetics was quantified. I show how simple protein engineering, by changing the hydropathy of a small number of amino acids, can enhance protein folding by significantly changing the free energy landscape so that kinetic traps are removed. The results have general applicability in protein engineering as well as understanding the underlying physical mechanisms of protein folding. ^
Resumo:
The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^
Resumo:
As the hotel industry grows more competitive, quality guest service becomes an increasingly important part of managers' responsibility measuring the quality of service delivery is facilitated when managers know what types of assessment methods are available to them. The authors present and discuss the following available measurement techniques and describe the situations where they best meet the needs of hotel managers: management observation, employee feedback programs, comment cards, mailed surveys, personal and telephone interviews, focus groups, and mystery shopping.