5 resultados para State Space Analysis

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverters play key roles in connecting sustainable energy (SE) sources to the local loads and the ac grid. Although there has been a rapid expansion in the use of renewable sources in recent years, fundamental research, on the design of inverters that are specialized for use in these systems, is still needed. Recent advances in power electronics have led to proposing new topologies and switching patterns for single-stage power conversion, which are appropriate for SE sources and energy storage devices. The current source inverter (CSI) topology, along with a newly proposed switching pattern, is capable of converting the low dc voltage to the line ac in only one stage. Simple implementation and high reliability, together with the potential advantages of higher efficiency and lower cost, turns the so-called, single-stage boost inverter (SSBI), into a viable competitor to the existing SE-based power conversion technologies.^ The dynamic model is one of the most essential requirements for performance analysis and control design of any engineering system. Thus, in order to have satisfactory operation, it is necessary to derive a dynamic model for the SSBI system. However, because of the switching behavior and nonlinear elements involved, analysis of the SSBI is a complicated task.^ This research applies the state-space averaging technique to the SSBI to develop the state-space-averaged model of the SSBI under stand-alone and grid-connected modes of operation. Then, a small-signal model is derived by means of the perturbation and linearization method. An experimental hardware set-up, including a laboratory-scaled prototype SSBI, is built and the validity of the obtained models is verified through simulation and experiments. Finally, an eigenvalue sensitivity analysis is performed to investigate the stability and dynamic behavior of the SSBI system over a typical range of operation. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation analyzes whether and how changes in federal tax policy affect local tax policies, specifically, the elimination of the federal deductibility of state and local taxes for individual taxpayers by the Tax Reform Act of 1986 (TRA86) in 59 California cities. Two methods are used in the study: a survey of local revenue officials and a time event time-series/cross sectional sales tax reliance study.^ The reliance study uses a covariance model to pool cross-section and time-series observations. The results of the reliance study indicate a statistically significant overall decline in sales tax reliance after 1986. The results of the survey indicate that local policy makers generally do not believe that federal deductibility is an important factor when considering raising local sales taxes. Further analysis shows that local revenue officials claiming federal deductibility is not an important factor are associated mostly with cities that registered no significant decline in sales tax reliance after 1986. Similarly, local revenue officials claiming federal deductibility is an important factor when considering local tax policy are associated mostly with cities that suffered a significant decline in sales tax reliance after 1986.^ Of that group, further analysis shows that the declines in sales tax reliance are associated mostly with cities located in the southwestern part of the state. When compared to other cities in the state, an analysis of variance reveals that there are a series of statistically significant factors associated with southwestern cities which may contribute to the decline in sales tax reliance following the enactment of the Tax Reform Act of 1986. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research on the adoption of innovations by individuals has been criticized for focusing on various factors that lead to the adoption or rejection of an innovation while ignoring important aspects of the dynamic process that takes place. Theoretical process-based models hypothesize that individuals go through consecutive stages of information gathering and decision making but do not clearly explain the mechanisms that cause an individual to leave one stage and enter the next one. Research on the dynamics of the adoption process have lacked a structurally formal and quantitative description of the process. ^ This dissertation addresses the adoption process of technological innovations from a Systems Theory perspective and assumes that individuals roam through different, not necessarily consecutive, states, determined by the levels of quantifiable state variables. It is proposed that different levels of these state variables determine the state in which potential adopters are. Various events that alter the levels of these variables can cause individuals to migrate into different states. ^ It was believed that Systems Theory could provide the required infrastructure to model the innovation adoption process, particularly applied to information technologies, in a formal, structured fashion. This dissertation assumed that an individual progressing through an adoption process could be considered a system, where the occurrence of different events affect the system's overall behavior and ultimately the adoption outcome. The research effort aimed at identifying the various states of such system and the significant events that could lead the system from one state to another. By mapping these attributes onto an “innovation adoption state space” the adoption process could be fully modeled and used to assess the status, history, and possible outcomes of a specific adoption process. ^ A group of Executive MBA students were observed as they adopted Internet-based technological innovations. The data collected were used to identify clusters in the values of the state variables and consequently define significant system states. Additionally, events were identified across the student sample that systematically moved the system from one state to another. The compilation of identified states and change-related events enabled the definition of an innovation adoption state-space model. ^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.