2 resultados para Stage efficiency
em Digital Commons at Florida International University
Resumo:
This dissertation analyzes hospital efficiency using various econometric techniques. The first essay provides additional and recent evidence to the presence of contract management behavior in the U.S. hospital industry. Unlike previous studies, which focus on either an input-demand equation or the cost function of the firm, this paper estimates the two jointly using a system of nonlinear equations. Moreover, it addresses the longitudinal problem of institutions adopting contract management in different years, by creating a matched control group of non-adopters with the same longitudinal distribution as the group under study. The estimation procedure then finds that labor, and not capital, is the preferred input in U.S. hospitals regardless of managerial contract status. With institutions that adopt contract management benefiting from lower labor inefficiencies than the simulated non-contract adopters. These results suggest that while there is a propensity for expense preference behavior towards the labor input, contract managed firms are able to introduce efficiencies over conventional, owner controlled, firms. Using data for the years 1998 through 2007, the second essay investigates the production technology and cost efficiency faced by Florida hospitals. A stochastic frontier multiproduct cost function is estimated in order to test for economies of scale, economies of scope, and relative cost efficiencies. The results suggest that small-sized hospitals experience economies of scale, while large and medium sized institutions do not. The empirical findings show that Florida hospitals enjoy significant scope economies, regardless of size. Lastly, the evidence suggests that there is a link between hospital size and relative cost efficiency. The results of the study imply that state policy makers should be focused on increasing hospital scale for smaller institutions while facilitating the expansion of multiproduct production for larger hospitals. The third and final essay employs a two staged approach in analyzing the efficiency of hospitals in the state of Florida. In the first stage, the Banker, Charnes, and Cooper model of Data Envelopment Analysis is employed in order to derive overall technical efficiency scores for each non-specialty hospital in the state. Additionally, input slacks are calculated and reported in order to identify the factors of production that each hospital may be over utilizing. In the second stage, we employ a Tobit regression model in order to analyze the effects a number of structural, managerial, and environmental factors may have on a hospital’s efficiency. The results indicated that most non-specialty hospitals in the state are operating away from the efficient production frontier. The results also indicate that the structural make up, managerial choices, and level of competition Florida hospitals face have an impact on their overall technical efficiency.
Resumo:
Inverters play key roles in connecting sustainable energy (SE) sources to the local loads and the ac grid. Although there has been a rapid expansion in the use of renewable sources in recent years, fundamental research, on the design of inverters that are specialized for use in these systems, is still needed. Recent advances in power electronics have led to proposing new topologies and switching patterns for single-stage power conversion, which are appropriate for SE sources and energy storage devices. The current source inverter (CSI) topology, along with a newly proposed switching pattern, is capable of converting the low dc voltage to the line ac in only one stage. Simple implementation and high reliability, together with the potential advantages of higher efficiency and lower cost, turns the so-called, single-stage boost inverter (SSBI), into a viable competitor to the existing SE-based power conversion technologies.^ The dynamic model is one of the most essential requirements for performance analysis and control design of any engineering system. Thus, in order to have satisfactory operation, it is necessary to derive a dynamic model for the SSBI system. However, because of the switching behavior and nonlinear elements involved, analysis of the SSBI is a complicated task.^ This research applies the state-space averaging technique to the SSBI to develop the state-space-averaged model of the SSBI under stand-alone and grid-connected modes of operation. Then, a small-signal model is derived by means of the perturbation and linearization method. An experimental hardware set-up, including a laboratory-scaled prototype SSBI, is built and the validity of the obtained models is verified through simulation and experiments. Finally, an eigenvalue sensitivity analysis is performed to investigate the stability and dynamic behavior of the SSBI system over a typical range of operation. ^