6 resultados para Stack Overflow

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this dissertation, I examine both theoretically and empirically the relationship between stock prices and income distribution using an endogenous growth model with social status impatience.^ The theoretical part looks into how status impatience and current economic status jointly determine time preference, savings, future economic status, stock prices, growth and wealth distribution in the steady state. This work builds on Burgstaller and Karayalcin (1996).^ More specifically, I look at (i) the effects of the distribution of status impatience levels on the distribution of steady state assets, incomes and consumption and (ii) the effects of changes in relative levels of status impatience on stock prices. Therefore, from (i) and (ii), I derive the correlation between stock prices, incomes and asset distribution. Also, the analysis of the stack market is undertaken in the presence of adjustment costs to investments.^ The empirical chapter looks at (i) the correlation between income inequality and long run economic growth on the one hand and (ii) the correlation between stock market prices and income inequality on the other. The role of stock prices and social status is examined to better understand the forces that enable a country to grow overtime and to determine why output per capita varies across countries. The data are from Summers and Heston (1988), Barro and Wolf (1989), Alesina and Rodrik (1994), Global financial Database (1997) and the World Bank. Data for social status are collected through a primary sample survey on the internet. Twenty-five developed and developing countries are included in the sample.^ The model developed in this study was specified as a system of simultaneous equations, in which per capita growth rate and income inequality were endogenous variables. Additionally, stock price index and social status measures were also incorporated. The results indicate that income inequality is inversely related to economic growth. In addition, increase in income inequality arising from higher stock prices constrains growth. Moreover, where social status is determined by income levels, it influences long run growth. Therefore, these results support findings of Persson and Tabellini (1994) and Alesina and Rodrik (1994). ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs -1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm -2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and discharge at rates as high as 50 Vs-1. CV measurements show that the specific capacitance of the micro-supercapacitor based on reduced graphene oxide and carbon nanotube composites is 6.1 mFcm -2 at scan rate of 0.01Vs-1. At a very high scan rate of 50 Vs-1, a specific capacitance of 2.8 mFcm-2 (stack capacitance of 3.1 Fcm-3) is recorded. This unprecedented performance can potentially broaden the future applications of micro-supercapacitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Storage is a central part of computing. Driven by exponentially increasing content generation rate and a widening performance gap between memory and secondary storage, researchers are in the perennial quest to push for further innovation. This has resulted in novel ways to "squeeze" more capacity and performance out of current and emerging storage technology. Adding intelligence and leveraging new types of storage devices has opened the door to a whole new class of optimizations to save cost, improve performance, and reduce energy consumption. In this dissertation, we first develop, analyze, and evaluate three storage extensions. Our first extension tracks application access patterns and writes data in the way individual applications most commonly access it to benefit from the sequential throughput of disks. Our second extension uses a lower power flash device as a cache to save energy and turn off the disk during idle periods. Our third extension is designed to leverage the characteristics of both disks and solid state devices by placing data in the most appropriate device to improve performance and save power. In developing these systems, we learned that extending the storage stack is a complex process. Implementing new ideas incurs a prolonged and cumbersome development process and requires developers to have advanced knowledge of the entire system to ensure that extensions accomplish their goal without compromising data recoverability. Futhermore, storage administrators are often reluctant to deploy specific storage extensions without understanding how they interact with other extensions and if the extension ultimately achieves the intended goal. We address these challenges by using a combination of approaches. First, we simplify the storage extension development process with system-level infrastructure that implements core functionality commonly needed for storage extension development. Second, we develop a formal theory to assist administrators deploy storage extensions while guaranteeing that the given high level goals are satisfied. There are, however, some cases for which our theory is inconclusive. For such scenarios we present an experimental methodology that allows administrators to pick an extension that performs best for a given workload. Our evaluation demostrates the benefits of both the infrastructure and the formal theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prototype 3-dimensional (3D) anode, based on multiwall carbon nanotubes (MWCNTs), for Li-ion batteries (LIBs), with potential use in Electric Vehicles (EVs) was investigated. The unique 3D design of the anode allowed much higher areal mass density of MWCNTs as active materials, resulting in more amount of Li+ ion intake, compared to that of a conventional 2D counterpart. Furthermore, 3D amorphous Si/MWCNTs hybrid structure offered enhancement in electrochemical response (specific capacity 549 mAhg–1 ). Also, an anode stack was fabricated to further increase the areal or volumetric mass density of MWCNTs. An areal mass density of the anode stack 34.9 mg/cm2 was attained, which is 1,342% higher than the value for a single layer 2.6 mg/cm2. Furthermore, the binder-assisted and hot-pressed anode stack yielded the average reversible, stable gravimetric and volumetric specific capacities of 213 mAhg–1 and 265 mAh/cm3, respectively (at 0.5C). Moreover, a large-scale patterned novel flexible 3D MWCNTs-graphene-polyethylene terephthalate (PET) anode structure was prepared. It generated a reversible specific capacity of 153 mAhg–1 at 0.17C and cycling stability of 130 mAhg –1 up to 50 cycles at 1.7C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A purpose of this research study was to demonstrate the practical linguistic study and evaluation of dissertations by using two examples of the latest technology, the microcomputer and optical scanner. That involved developing efficient methods for data entry plus creating computer algorithms appropriate for personal, linguistic studies. The goal was to develop a prototype investigation which demonstrated practical solutions for maximizing the linguistic potential of the dissertation data base. The mode of text entry was from a Dest PC Scan 1000 Optical Scanner. The function of the optical scanner was to copy the complete stack of educational dissertations from the Florida Atlantic University Library into an I.B.M. XT microcomputer. The optical scanner demonstrated its practical value by copying 15,900 pages of dissertation text directly into the microcomputer. A total of 199 dissertations or 72% of the entire stack of education dissertations (277) were successfully copied into the microcomputer's word processor where each dissertation was analyzed for a variety of syntax frequencies. The results of the study demonstrated the practical use of the optical scanner for data entry, the microcomputer for data and statistical analysis, and the availability of the college library as a natural setting for text studies. A supplemental benefit was the establishment of a computerized dissertation corpus which could be used for future research and study. The final step was to build a linguistic model of the differences in dissertation writing styles by creating 7 factors from 55 dependent variables through principal components factor analysis. The 7 factors (textual components) were then named and described on a hypothetical construct defined as a continuum from a conversational, interactional style to a formal, academic writing style. The 7 factors were then grouped through discriminant analysis to create discriminant functions for each of the 7 independent variables. The results indicated that a conversational, interactional writing style was associated with more recent dissertations (1972-1987), an increase in author's age, females, and the department of Curriculum and Instruction. A formal, academic writing style was associated with older dissertations (1972-1987), younger authors, males, and the department of Administration and Supervision. It was concluded that there were no significant differences in writing style due to subject matter (community college studies) compared to other subject matter. It was also concluded that there were no significant differences in writing style due to the location of dissertation origin (Florida Atlantic University, University of Central Florida, Florida International University).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prototype 3-dimensional (3D) anode, based on multiwall carbon nanotubes (MWCNTs), for Li-ion batteries (LIBs), with potential use in Electric Vehicles (EVs) was investigated. The unique 3D design of the anode allowed much higher areal mass density of MWCNTs as active materials, resulting in more amount of Li+ ion intake, compared to that of a conventional 2D counterpart. Furthermore, 3D amorphous Si/MWCNTs hybrid structure offered enhancement in electrochemical response (specific capacity 549 mAhg-1). Also, an anode stack was fabricated to further increase the areal or volumetric mass density of MWCNTs. An areal mass density of the anode stack 34.9 mg/cm2 was attained, which is 1,342% higher than the value for a single layer 2.6 mg/cm2. Furthermore, the binder-assisted and hot-pressed anode stack yielded the average reversible, stable gravimetric and volumetric specific capacities of 213 mAhg-1 and 265 mAh/cm3, respectively (at 0.5C). Moreover, a large-scale patterned novel flexible 3D MWCNTs-graphene-polyethylene terephthalate (PET) anode structure was prepared. It generated a reversible specific capacity of 153 mAhg-1 at 0.17C and cycling stability of 130 mAhg-1 up to 50 cycles at 1.7C.