2 resultados para St. Lawrence River
em Digital Commons at Florida International University
Resumo:
Improved knowledge of sediment dynamics within a lake system is important for understanding lake water quality. This research was focused on an assessment of the vertical sediment flux in Lake Jesup, a shallow (1.3 m average depth) hypereutrophic lake of central Florida. Sediment dynamics were assessed at varying time scales (daily to weekly) to understand the transport of sediments from external forces; wind, waves, precipitation and/or runoff. Four stations were selected within the lake on the basis of water depth and the thicknesses of unconsolidated (floc) and consolidated sediments. At each of these stations, a 10:1 (length to diameter) high aspect ratio trap (STHA) was deployed to collect particulate matter for a one to two week period. The water and sediment samples were collected and analyzed for total carbon (TC), total phosphorus (TP) and total nitrogen (TN). Mass accumulation rates (MAR) collected by the traps varied from 77 to 418 g m-2 d-1 over seven deployments. TN, TP and TC sediment concentrations collected by the traps were consistently higher than the sediments collected by coring the lake bottom and is most likely associated with water column biomass. A yearly nutrient budget was determined from August 2009 to August 2010 with flux calculated as 2,033,882 mt yr-1.
Resumo:
Pesticide monitoring in St. Lucie County by various local, state and federal agencies has indicated consistent residues of several pesticides, including ethion and bromacil. Although pesticides have long been known to pose a threat to non-target species and much background monitoring has been done, no pesticide aquatic risk assessment has been done in this geographical area. Several recognized United States Environmental Protection Agency (USEPA) methods of quantifying risk are employed here to include hazard quotients (HQ) and probabilistic modeling with sensitivity analysis. These methods are employed to characterize potential impacts to aquatic biota of the C-25 Canal and the Indian River Lagoon (in St. Lucie County, Florida) based on current agricultural pesticide use and drainage patterns. The model used in the analysis incorporates available physical-chemical property data, local hydrology, ecosystem information, and pesticide use practices. HQ's, probabilistic distributions, and field sample analyses resulted in high levels of concern (LOCs), which usually indicates a need for regulatory action, including restrictions on use, or cancellation. ^