15 resultados para Spatial Durbin model
em Digital Commons at Florida International University
Resumo:
This is a dissertation about urban systems; within this broad subject I tackle three issues, one that focuses on an observed inter-city relationship and two that focus on an intra-city phenomenon. In Chapter II I adapt a model of random emergence of economic opportunities from the firm growth literature to the urban dynamics situation and present several predictions for urban system dynamics. One of these predictions is that the older the city the larger and more diversified it is going to be on average, which I proceed to verify empirically using two distinct datasets. In Chapter III I analyze the Residential Real Estate Bubble that took place in Miami-Dade County from 1999 to 2006. I adopt a Spatial-Economic model developed for the Paris Bubble episode of 1984–1993 and formulate an innovative test of the results in terms of speculative intensity on the basis of proxies of investor activity available in my dataset. My results support the idea that the best or more expensive areas are also where the greatest speculative activity takes place and where the rapid increase in prices begins. The most significant departure from previous studies that emerges in my results is the absence of a wider gap between high priced areas and low priced areas in the peak year. I develop a measure of dispersion in value among areas and contrast the Miami-Dade and Paris episodes. In Chapter IV I analyze the impact on tax equity of a Florida tax-limiting legislation known as Save Our Homes. I first compare homesteaded and non-homesteaded properties, and second, look within the subset of homesteaded properties. I find that non-homesteaded properties increase their share of taxes paid relative to homesteaded properties during an up market, but that this is reversed during a down market. For the subset of homesteaded properties I find that the impact on tax equity of SOH will depend on differential growth rates among higher and lower valued homes, but during times of rapid home price appreciation, in a scenario of no differential growth rates in property values, SOH increases progressivity relative to the prior system.
Resumo:
Digital systems can generate left and right audio channels that create the effect of virtual sound source placement (spatialization) by processing an audio signal through pairs of Head-Related Transfer Functions (HRTFs) or, equivalently, Head-Related Impulse Responses (HRIRs). The spatialization effect is better when individually-measured HRTFs or HRIRs are used than when generic ones (e.g., from a mannequin) are used. However, the measurement process is not available to the majority of users. There is ongoing interest to find mechanisms to customize HRTFs or HRIRs to a specific user, in order to achieve an improved spatialization effect for that subject. Unfortunately, the current models used for HRTFs and HRIRs contain over a hundred parameters and none of those parameters can be easily related to the characteristics of the subject. This dissertation proposes an alternative model for the representation of HRTFs, which contains at most 30 parameters, all of which have a defined functional significance. It also presents methods to obtain the value of parameters in the model to make it approximately equivalent to an individually-measured HRTF. This conversion is achieved by the systematic deconstruction of HRIR sequences through an augmented version of the Hankel Total Least Squares (HTLS) decomposition approach. An average 95% match (fit) was observed between the original HRIRs and those re-constructed from the Damped and Delayed Sinusoids (DDSs) found by the decomposition process, for ipsilateral source locations. The dissertation also introduces and evaluates an HRIR customization procedure, based on a multilinear model implemented through a 3-mode tensor, for mapping of anatomical data from the subjects to the HRIR sequences at different sound source locations. This model uses the Higher-Order Singular Value Decomposition (HOSVD) method to represent the HRIRs and is capable of generating customized HRIRs from easily attainable anatomical measurements of a new intended user of the system. Listening tests were performed to compare the spatialization performance of customized, generic and individually-measured HRIRs when they are used for synthesized spatial audio. Statistical analysis of the results confirms that the type of HRIRs used for spatialization is a significant factor in the spatialization success, with the customized HRIRs yielding better results than generic HRIRs.
Resumo:
Hydrogeologic variables controlling groundwater exchange with inflow and flow-through lakes were simulated using a three-dimensional numerical model (MODFLOW) to investigate and quantify spatial patterns of lake bed seepage and hydraulic head distributions in the porous medium surrounding the lakes. Also, the total annual inflow and outflow were calculated as a percentage of lake volume for flow-through lake simulations. The general exponential decline of seepage rates with distance offshore was best demonstrated at lower anisotropy ratio (i.e., Kh/Kv = 1, 10), with increasing deviation from the exponential pattern as anisotropy was increased to 100 and 1000. 2-D vertical section models constructed for comparison with 3-D models showed that groundwater heads and seepages were higher in 3-D simulations. Addition of low conductivity lake sediments decreased seepage rates nearshore and increased seepage rates offshore in inflow lakes, and increased the area of groundwater inseepage on the beds of flow-through lakes. Introduction of heterogeneity into the medium decreased the water table and seepage ratesnearshore, and increased seepage rates offshore in inflow lakes. A laterally restricted aquifer located at the downgradient side of the flow-through lake increased the area of outseepage. Recharge rate, lake depth and lake bed slope had relatively little effect on the spatial patterns of seepage rates and groundwater exchange with lakes.
Resumo:
An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^
Resumo:
Since the Morris worm was released in 1988, Internet worms continue to be one of top security threats. For example, the Conficker worm infected 9 to 15 million machines in early 2009 and shut down the service of some critical government and medical networks. Moreover, it constructed a massive peer-to-peer (P2P) botnet. Botnets are zombie networks controlled by attackers setting out coordinated attacks. In recent years, botnets have become the number one threat to the Internet. The objective of this research is to characterize spatial-temporal infection structures of Internet worms, and apply the observations to study P2P-based botnets formed by worm infection. First, we infer temporal characteristics of the Internet worm infection structure, i.e., the host infection time and the worm infection sequence, and thus pinpoint patient zero or initially infected hosts. Specifically, we apply statistical estimation techniques on Darknet observations. We show analytically and empirically that our proposed estimators can significantly improve the inference accuracy. Second, we reveal two key spatial characteristics of the Internet worm infection structure, i.e., the number of children and the generation of the underlying tree topology formed by worm infection. Specifically, we apply probabilistic modeling methods and a sequential growth model. We show analytically and empirically that the number of children has asymptotically a geometric distribution with parameter 0.5, and the generation follows closely a Poisson distribution. Finally, we evaluate bot detection strategies and effects of user defenses in P2P-based botnets formed by worm infection. Specifically, we apply the observations of the number of children and demonstrate analytically and empirically that targeted detection that focuses on the nodes with the largest number of children is an efficient way to expose bots. However, we also point out that future botnets may self-stop scanning to weaken targeted detection, without greatly slowing down the speed of worm infection. We then extend the worm spatial infection structure and show empirically that user defenses, e.g. , patching or cleaning, can significantly mitigate the robustness and the effectiveness of P2P-based botnets. To counterattack, we evaluate a simple measure by future botnets that enhances topology robustness through worm re-infection.
Resumo:
The major objectives of this dissertation were to develop optimal spatial techniques to model the spatial-temporal changes of the lake sediments and their nutrients from 1988 to 2006, and evaluate the impacts of the hurricanes occurred during 1998–2006. Mud zone reduced about 10.5% from 1988 to 1998, and increased about 6.2% from 1998 to 2006. Mud areas, volumes and weight were calculated using validated Kriging models. From 1988 to 1998, mud thicknesses increased up to 26 cm in the central lake area. The mud area and volume decreased about 13.78% and 10.26%, respectively. From 1998 to 2006, mud depths declined by up to 41 cm in the central lake area, mud volume reduced about 27%. Mud weight increased up to 29.32% from 1988 to 1998, but reduced over 20% from 1998 to 2006. The reduction of mud sediments is likely due to re-suspension and redistribution by waves and currents produced by large storm events, particularly Hurricanes Frances and Jeanne in 2004 and Wilma in 2005. Regression, kriging, geographically weighted regression (GWR) and regression-kriging models have been calibrated and validated for the spatial analysis of the sediments TP and TN of the lake. GWR models provide the most accurate predictions for TP and TN based on model performance and error analysis. TP values declined from an average of 651 to 593 mg/kg from 1998 to 2006, especially in the lake’s western and southern regions. From 1988 to 1998, TP declined in the northern and southern areas, and increased in the central-western part of the lake. The TP weights increased about 37.99%–43.68% from 1988 to 1998 and decreased about 29.72%–34.42% from 1998 to 2006. From 1988 to 1998, TN decreased in most areas, especially in the northern and southern lake regions; western littoral zone had the biggest increase, up to 40,000 mg/kg. From 1998 to 2006, TN declined from an average of 9,363 to 8,926 mg/kg, especially in the central and southern regions. The biggest increases occurred in the northern lake and southern edge areas. TN weights increased about 15%–16.2% from 1988 to 1998, and decreased about 7%–11% from 1998 to 2006.
Resumo:
Modern geographical databases, which are at the core of geographic information systems (GIS), store a rich set of aspatial attributes in addition to geographic data. Typically, aspatial information comes in textual and numeric format. Retrieving information constrained on spatial and aspatial data from geodatabases provides GIS users the ability to perform more interesting spatial analyses, and for applications to support composite location-aware searches; for example, in a real estate database: “Find the nearest homes for sale to my current location that have backyard and whose prices are between $50,000 and $80,000”. Efficient processing of such queries require combined indexing strategies of multiple types of data. Existing spatial query engines commonly apply a two-filter approach (spatial filter followed by nonspatial filter, or viceversa), which can incur large performance overheads. On the other hand, more recently, the amount of geolocation data has grown rapidly in databases due in part to advances in geolocation technologies (e.g., GPS-enabled smartphones) that allow users to associate location data to objects or events. The latter poses potential data ingestion challenges of large data volumes for practical GIS databases. In this dissertation, we first show how indexing spatial data with R-trees (a typical data pre-processing task) can be scaled in MapReduce—a widely-adopted parallel programming model for data intensive problems. The evaluation of our algorithms in a Hadoop cluster showed close to linear scalability in building R-tree indexes. Subsequently, we develop efficient algorithms for processing spatial queries with aspatial conditions. Novel techniques for simultaneously indexing spatial with textual and numeric data are developed to that end. Experimental evaluations with real-world, large spatial datasets measured query response times within the sub-second range for most cases, and up to a few seconds for a small number of cases, which is reasonable for interactive applications. Overall, the previous results show that the MapReduce parallel model is suitable for indexing tasks in spatial databases, and the adequate combination of spatial and aspatial attribute indexes can attain acceptable response times for interactive spatial queries with constraints on aspatial data.
Resumo:
We developed a conceptual ecological model (CEM) for invasive species to help understand the role invasive exotics have in ecosystem ecology and their impacts on restoration activities. Our model, which can be applied to any invasive species, grew from the eco-regional conceptual models developed for Everglades restoration. These models identify ecological drivers, stressors, effects and attributes; we integrated the unique aspects of exotic species invasions and effects into this conceptual hierarchy. We used the model to help identify important aspects of invasion in the development of an invasive exotic plant ecological indicator, which is described a companion paper in this special issue journal. A key aspect of the CEM is that it is a general ecological model that can be tailored to specific cases and species, as the details of any invasion are unique to that invasive species. Our model encompasses the temporal and spatial changes that characterize invasion, identifying the general conditions that allow a species to become invasive in a de novo environment; it then enumerates the possible effects exotic species may have collectively and individually at varying scales and for different ecosystem properties, once a species becomes invasive. The model provides suites of characteristics and processes, as well as hypothesized causal relationships to consider when thinking about the effects or potential effects of an invasive exotic and how restoration efforts will affect these characteristics and processes. In order to illustrate how to use the model as a blueprint for applying a similar approach to other invasive species and ecosystems, we give two examples of using this conceptual model to evaluate the status of two south Florida invasive exotic plant species (melaleuca and Old World climbing fern) and consider potential impacts of these invasive species on restoration.
Resumo:
Elemental and isotopic composition of leaves of the seagrassThalassia testudinum was highly variable across the 10,000 km2 and 8 years of this study. The data reported herein expand the reported range in carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios and δ13C and δ15N values reported for this species worldwide; 13.2–38.6 for C:N and 411–2,041 for C:P. The 981 determinations in this study generated a range of −13.5‰ to −5.2‰ for δ13C and −4.3‰ to 9.4‰ for δ15N. The elemental and isotope ratios displayed marked seasonality, and the seasonal patterns could be described with a simple sine wave model. C:N, C:P, δ13C, and δ15N values all had maxima in the summer and minima in the winter. Spatial patterns in the summer maxima of these quantities suggest there are large differences in the relative availability of N and P across the study area and that there are differences in the processing and the isotopic composition of C and N. This work calls into question the interpretation of studies about nutrient cycling and food webs in estuaries based on few samples collected at one time, since we document natural variability greater than the signal often used to imply changes in the structure or function of ecosystems. The data and patterns presented in this paper make it clear that there is no threshold δ15N value for marine plants that can be used as an unambiguous indicator of human sewage pollution without a thorough understanding of local temporal and spatial variability.
Resumo:
A method to estimate speed of free-ranging fishes using a passive sampling device is described and illustrated with data from the Everglades, U.S.A. Catch per unit effort (CPUE) from minnow traps embedded in drift fences was treated as an encounter rate and used to estimate speed, when combined with an independent estimate of density obtained by use of throw traps that enclose 1 m2 of marsh habitat. Underwater video was used to evaluate capture efficiency and species-specific bias of minnow traps and two sampling studies were used to estimate trap saturation and diel-movement patterns; these results were used to optimize sampling and derive correction factors to adjust species-specific encounter rates for bias and capture efficiency. Sailfin mollies Poecilia latipinna displayed a high frequency of escape from traps, whereas eastern mosquitofish Gambusia holbrooki were most likely to avoid a trap once they encountered it; dollar sunfish Lepomis marginatus were least likely to avoid the trap once they encountered it or to escape once they were captured. Length of sampling and time of day affected CPUE; fishes generally had a very low retention rate over a 24 h sample time and only the Everglades pygmy sunfish Elassoma evergladei were commonly captured at night. Dispersal speed of fishes in the Florida Everglades, U.S.A., was shown to vary seasonally and among species, ranging from 0· 05 to 0· 15 m s−1 for small poeciliids and fundulids to 0· 1 to 1· 8 m s−1 for L. marginatus. Speed was generally highest late in the wet season and lowest in the dry season, possibly tied to dispersal behaviours linked to finding and remaining in dry-season refuges. These speed estimates can be used to estimate the diffusive movement rate, which is commonly employed in spatial ecological models.
Resumo:
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as ƒ-test is performed during each node's split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.
Resumo:
The distribution and abundance of the American crocodile (Crocodylus acutus) in the Florida Everglades is dependent on the timing, amount, and location of freshwater flow. One of the goals of the Comprehensive Everglades Restoration Plan (CERP) is to restore historic freshwater flows to American crocodile habitat throughout the Everglades. To predict the impacts on the crocodile population from planned restoration activities, we created a stage-based spatially explicit crocodile population model that incorporated regional hydrology models and American crocodile research and monitoring data. Growth and survival were influenced by salinity, water depth, and density-dependent interactions. A stage-structured spatial model was used with discrete spatial convolution to direct crocodiles toward attractive sources where conditions were favorable. The model predicted that CERP would have both positive and negative impacts on American crocodile growth, survival, and distribution. Overall, crocodile populations across south Florida were predicted to decrease approximately 3 % with the implementation of CERP compared to future conditions without restoration, but local increases up to 30 % occurred in the Joe Bay area near Taylor Slough, and local decreases up to 30 % occurred in the vicinity of Buttonwood Canal due to changes in salinity and freshwater flows.
Resumo:
Landscape characteristics, disturbances, and temporal variability influence predator-prey relationships, but are often overlooked in experimental studies. In the Everglades, seasonal disturbances force the spatial overlap of predators and prey, potentially increasing predation risk for prey. This study examined seasonal and diel patterns of fish use of canals and assessed predation risk for small fishes using an encounter rate model. I deployed an imaging sonar in Everglades canals to quantify density and swimming speeds of fishes, and detect anti-predator behaviors by small fishes. Generally, seasonal declines of marsh water-levels increased the density of large fishes in canals. Densities of small and large fishes were positively correlated and, as small-fish density increased, schooling frequency also increased. At night, schools disbanded and small fishes were observed congregating along the canal edge. The encounter rate model predicted highest predator-prey encounters during the day, but access to cover may reduce predation risk for small fishes.
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.