4 resultados para Space environment

em Digital Commons at Florida International University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite's Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite’s Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Public opinion polls in the United States reveal that a great majority of Americans are aware and show concern about ecological issues and the need to preserve natural areas. In South Florida, natural resources have been subjected to enormous strain as the pressure to accommodate a growing population has led to rapid development. Suburbs have been built on areas that were once natural wetlands and farmlands, and the impact today shows a landscape where natural places have all but disappeared. This dissertation examines the intersection between the perceptions that individuals living in the South Florida region have with respect to the natural environment and local ecological problems with where their relationship to nature takes place. ^ The research is based upon both quantitative and qualitative data. The principal methodology used in this research is the ethnographic method, which employed the data gathering techniques of in-depth interviewing and participant observation. The objective of the qualitative portion of the study was to determine how people perceive and relate to their immediate environment. The quantitative portion of the study employed telephone survey data from the FIU/Florida Poll 2000. Data collected through this survey provided the basis to statistically test responses to the research questions. ^ The findings show that people in South Florida have a general idea of the relationship between the human population and the environment but very little knowledge of how they individually affect each other. The experience of private places and public spaces in everyday life permits people to compartmentalize cultural values and understandings of the natural world in separate cognitive schemas. The appreciation of the natural world has almost no connection to their personal sense of obligation to preserve the environment. That obligation is only felt in their home space even though the South Florida environment overall struggles desperately with water shortages, land encroachment, and a rapidly expanding human population whose activities continuously aggravate an already delicate natural balance. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis was to investigate the effects of the built environment on the outcome of young patients. This investigation included recent innovations in children's hospitals that integrated both medical and architectural case studies as part of their design issues. In addition, the intervention responded to man-made conditions and natural elements of the site. The thesis project, a Children's Rehabilitation Hospital, is located at 1500 N.W. River Drive in Miami, Florida. The thesis intervention emerged from a site analysis that focused on the shifting of the urban grid, the variation in scale of the immediate context and the visual-physical connection to the river's edge. Furthermore, it addressed the issues of overnight accommodation for patient's families, as well as sound control through the use of specific materials in space enclosures and open courtyards. The key to the success of this intervention lies in the special attention given to the integration between nature and the built environment. Issues such as the incorporation of nature within a building through the use of vistas and the exploitation of natural light through windows and skylights, were pivotal in the creation of a pleasant environment for visitors, employees and young patients.