4 resultados para Soil productivity

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height <3 m cover 49% of the EMER, particularly in the SE region. These scrub/dwarf mangroves are the result of a combination of low soil phosphorus (P < 59 μg P g dw−1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low and high water periods create contrasting challenges for trees inhabiting periodically flooded wetlands. Low to moderate flood durations and frequencies may bring nutrient subsidies, while greater hydroperiods can be energetically stressful because of oxygen deficiency. We tested the hypothesis that hydroperiod affects the growth of mangrove seedlings and saplings in a greenhouse experiment by varying flood duration while keeping salinity and soil fertility constant. We measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment. Greenhouse growth studies indicated that under a full range of annual flood durations (0–8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons. Field evaluations, on the other hand, indicated that increased flood duration may provide nutrient subsidies for tree growth. Diameter growth was related curvilinearly to site hydroperiod, including flood duration and frequency, as well as to salinity and soil fertility. An analysis of soil physico-chemical parameters suggests that phosphorus fertility, which was also linked directly to hydroperiod, is likely to influence growth on south Florida mangrove sites. The physical removal of phosphorus by greater flood frequencies from upland sources and/or addition of phosphorus from tidal flooding balanced against increased soil aeration and reduced water deficits may be an extremely important growth determinant for south Florida mangroves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation patterns of mangroves in the Florida Coastal Everglades (FCE) result from the interaction of environmental gradients and natural disturbances (i.e., hurricanes), creating an array of distinct riverine and scrub mangroves across the landscape. We investigated how landscape patterns of biomass and total net primary productivity (NPPT), including allocation in above- and below-ground mangrove components, vary inter-annually (2001–2004) across gradients in soil properties and hydroperiod in two distinct FCE basins: Shark River Estuary and Taylor River Slough. We propose that the allocation of belowground biomass and productivity (NPPB) relative to aboveground allocation is greater in regions with P limitation and permanent flooding. Porewater sulfide was significantly higher in Taylor River (1.2 ± 0.3 mM) compared to Shark River (0.1 ± 0.03 mM) indicating the lack of a tidal signature and more permanent flooding in this basin. There was a decrease in soil P density and corresponding increase in soil N:P from the mouth (28) to upstream locations (46–105) in Shark River that was consistent with previous results in this region. Taylor River sites showed the highest P limitation (soil N:P > 60). Average NPPT was double in higher P environments (17.0 ± 1.1 Mg ha−1 yr−1) compared to lower P regions (8.3 ± 0.3 Mg ha−1 yr−1). Root biomass to aboveground wood biomass (BGB:AWB) ratio was 17 times higher in P-limited environments demonstrating the allocation strategies of mangroves under resource limitation. Riverine mangroves allocated most of the NPPT to aboveground (69%) while scrub mangroves showed the highest allocation to belowground (58%). The total production to biomass (P:B) ratios were lower in Shark River sites (0.11 yr−1); whereas in Taylor River sites P:B ratios were higher and more variable (0.13–0.24 yr−1). Our results suggest that the interaction of lower P availability in Taylor River relative to Shark River basin, along with higher sulfide and permanent flooding account for higher allocation of belowground biomass and production, at expenses of aboveground growth and wood biomass. These distinct patterns of carbon partitioning between riverine and scrub mangroves in response to environmental stress support our hypothesis that belowground allocation is a significant contribution to soil carbon storage in forested wetlands across FCE, particularly in P-limited scrub mangroves. Elucidating these biomass strategies will improve analysis of carbon budgets (storage and production) in neotropical mangroves and understanding what conditions lead to net carbon sinks in the tropical coastal zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change in the Arctic is predicted to increase plant productivity through decomposition-related enhanced nutrient availability. However, the extent of the increase will depend on whether the increased nutrient availability can be sustained. To address this uncertainty, I assessed the response of plant tissue nutrients, litter decomposition rates, and soil nutrient availability to experimental climate warming manipulations, extended growing season and soil warming, over a 7 year period. Overall, the most consistent effect was the year-to-year variability in measured parameters, probably a result of large differences in weather and time of snowmelt. The results of this study emphasize that although plants of arctic environments are specifically adapted to low nutrient availability, they also posses a suite of traits that help to reduce nutrient losses such as slow growth, low tissue concentrations, and low tissue turnover that result in subtle responses to environmental changes.