4 resultados para Software package SPICE

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this thesis was to identify the optimal design parameters for a jet nozzle which obtains a local maximum shear stress while maximizing the average shear stress on the floor of a fluid filled system. This research examined how geometric parameters of a jet nozzle, such as the nozzle's angle, height, and orifice, influence the shear stress created on the bottom surface of a tank. Simulations were run using a Computational Fluid Dynamics (CFD) software package to determine shear stress values for a parameterized geometric domain including the jet nozzle. A response surface was created based on the shear stress values obtained from 112 simulated designs. A multi-objective optimization software utilized the response surface to generate designs with the best combination of parameters to achieve maximum shear stress and maximum average shear stress. The optimal configuration of parameters achieved larger shear stress values over a commercially available design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In his study - Evaluating and Selecting a Property Management System - by Galen Collins, Assistant Professor, School of Hotel and Restaurant Management, Northern Arizona University, Assistant Professor Collins states briefly at the outset: “Computerizing a property requires a game plan. Many have selected a Property Management System without much forethought and have been unhappy with the final results. The author discusses the major factors that must be taken into consideration in the selection of a PMS, based on his personal experience.” Although, this article was written in the year 1988 and some information contained may be dated, there are many salient points to consider. “Technological advances have encouraged many hospitality operators to rethink how information should be processed, stored, retrieved, and analyzed,” offers Collins. “Research has led to the implementation of various cost-effective applications addressing almost every phase of operations,” he says in introducing the computer technology germane to many PMS functions. Professor Collins talks about the Request for Proposal, its conditions and its relevance in negotiating a PMS system. The author also wants the system buyer to be aware [not necessarily beware] of vendor recommendations, and not to rely solely on them. Exercising forethought will help in avoiding the drawback of purchasing an inadequate PMS system. Remember, the vendor is there first and foremost to sell you a system. This doesn’t necessarily mean that the adjectives unreliable and unethical are on the table, but do be advised. Professor Collins presents a graphic outline for the Weighted Average Approach to Scoring Vendor Evaluations. Among the elements to be considered in evaluating a PMS system, and there are several analyzed in this essay, Professor Collins advises that a perspective buyer not overlook the service factor when choosing a PMS system. Service is an important element to contemplate. “In a hotel environment, the special emphasis should be on service. System downtime can be costly and aggravating and will happen periodically,” Collins warns. Professor Collins also examines the topic of PMS system environment; of which the importance of such a factor should not be underestimated. “The design of the computer system should be based on the physical layout of the property and the projected workloads. The heart of the system, housed in a protected, isolated area, can support work stations strategically located throughout the property,” Professor Collins provides. A Property Profile Description is outlined in Table 1. The author would also point out that ease-of-operation is another significant factor to think about. “A user-friendly software package allows the user to easily move through the program without encountering frustrating obstacles,” says Collins. “Programs that require users to memorize abstract abbreviations, codes, and information to carry out standard routines should be avoided,” he counsels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study is to identify the optimal designs of converging-diverging supersonic and hypersonic nozzles that perform at maximum uniformity of thermodynamic and flow-field properties with respect to their average values at the nozzle exit. Since this is a multi-objective design optimization problem, the design variables used are parameters defining the shape of the nozzle. This work presents how variation of such parameters can influence the nozzle exit flow non-uniformities. A Computational Fluid Dynamics (CFD) software package, ANSYS FLUENT, was used to simulate the compressible, viscous gas flow-field in forty nozzle shapes, including the heat transfer analysis. The results of two turbulence models, k-e and k-ω, were computed and compared. With the analysis results obtained, the Response Surface Methodology (RSM) was applied for the purpose of performing a multi-objective optimization. The optimization was performed with ModeFrontier software package using Kriging and Radial Basis Functions (RBF) response surfaces. Final Pareto optimal nozzle shapes were then analyzed with ANSYS FLUENT to confirm the accuracy of the optimization process.