2 resultados para Smart truss structure

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shape memory alloys are a special class of metals that can undergo large deformation yet still be able to recover their original shape through the mechanism of phase transformations. However, when they experience plastic slip, their ability to recover their original shape is reduced. This is due to the presence of dislocations generated by plastic flow that interfere with shape recovery through the shape memory effect and the superelastic effect. A one-dimensional model that captures the coupling between shape memory effect, the superelastic effect and plastic deformation is introduced. The shape memory alloy is assumed to have only 3 phases: austenite, positive variant martensite and negative variant martensite. If the SMA flows plastically, each phase will exhibit a dislocation field that permanently prevents a portion of it from being transformed back to other phases. Hence, less of the phase is available for subsequent phase transformations. A constitutive model was developed to depict this phenomena and simulate the effect of plasticity on both the shape memory effect and the superelastic effect in shape memory alloys. In addition, experimental tests were conducted to characterize the phenomenon in shape memory wire and superelastic wire. ^ The constitutive model was then implemented in within a finite element context as UMAT (User MATerial Subroutine) for the commercial finite element package ABAQUS. The model is phenomenological in nature and is based on the construction of stress-temperature phase diagram. ^ The model has been shown to be capable of capturing the qualitative and quantitative aspects of the coupling between plasticity and the shape memory effect and plasticity and the super elastic effect within acceptable limits. As a verification case a simple truss structure was built and tested and then simulated using the FEA constitutive model. The results where found to be close the experimental data. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is directed towards optimizing the radiation pattern of smart antennas using genetic algorithms. The structure of the smart antennas based on Space Division Multiple Access (SDMA) is proposed. It is composed of adaptive antennas, each of which has adjustable weight elements for amplitudes and phases of signals. The corresponding radiation pattern formula available for the utilization of numerical optimization techniques is deduced. Genetic algorithms are applied to search the best phase-amplitude weights or phase-only weights with which the optimal radiation pattern can be achieved. ^ One highlight of this work is the proposed optimal radiation pattern concept and its implementation by genetic algorithms. The results show that genetic algorithms are effective for the true Signal-Interference-Ratio (SIR) design of smart antennas. This means that not only nulls can be put in the directions of the interfering signals but also simultaneously main lobes can be formed in the directions of the desired signals. The optimal radiation pattern of a smart antenna possessing SDMA ability has been achieved. ^ The second highlight is on the weight search by genetic algorithms for the optimal radiation pattern design of antennas having more than one interfering signal. The regular criterion for determining which chromosome should be kept for the next step iteration is modified so as to improve the performance of the genetic algorithm iteration. The results show that the modified criterion can speed up and guarantee the iteration to be convergent. ^ In addition, the comparison between phase-amplitude perturbations and phase-only perturbations for the radiation pattern design of smart antennas are carried out. The effects of parameters used by the genetic algorithm on the optimal radiation pattern design are investigated. Valuable results are obtained. ^