4 resultados para Sm-Nd isotope systematics

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraplate volcanism that has created the Hawaiian-Emperor seamount chain is generally thought to be formed by a deep-seated mantle plume. While the idea of a Hawaiian plume has not met with substantial opposition, whether or not the Hawaiian plume shows any geochemical signal of receiving materials from the Earth’s Outer Core and how the plume may or may not be reacting with the overriding lithosphere remain debatable issues. In an effort to understand how the Hawaiian plume works I report on the first in-situ sulfides and bulk rock Platinum Group Element (PGE) concentrations, together with Os isotope ratios on well-characterized garnet pyroxenite xenoliths from the island of Oahu in Hawaii. The sulfides are Fe-Ni Monosulfide Solid Solution and show fractionated PGE patterns. Based on the major elements, Platinum Group Elements and experimental data I interpret the Hawaiian sulfides as an immiscible melt that separated from a melt similar to the Honolulu Volcanics (HV) alkali lavas at a pressure-temperature condition of 1530 ± 100OC and 3.1±0.6 GPa., i.e. near the base or slightly below the Pacific lithosphere. The 187Os/188Os ratios of the bulk rock vary from subchondritic to suprachondritic (0.123-0.164); and the 187Os/188Os ratio strongly correlates with major element, High Field Strength Element (HFSE), Rare Earth Element (REE) and PGE abundances. These correlations strongly suggest that PGE concentrations and Os isotope ratios reflect primary mantle processes. I interpret these correlations as the result of melt-mantle reaction at the base of the lithosphere: I suggest that the parental melt that crystallized the pyroxenites selectively picked up radiogenic Os from the grain boundary sulfides, while percolating through the Pacific lithosphere. Thus the sampled pyroxenites essentially represent crystallized melts from different stages of this melt-mantle reaction process at the base of the lithosphere. I further show that the relatively low Pt/Re ratios of the Hawaiian sulfides and the bulk rock pyroxenites suggest that, upon ageing, such pyroxenites plus their sulfides cannot generate the coupled 186Os- 187Os isotope enrichments observed in Hawaiian lavas. Therefore, recycling of mantle sulfides of pyroxenitic parentage is unlikely to explain the enriched Pt-Re-Os isotope systematics of plume-derived lavas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty Four samples of xenoliths and country rocks from the 1961 lava flow of Calbuco volcano have been studied. Fourteen samples have been analyzed for major elements and P, Ni, Ba, Cr, V, Zr, Sc, Y, and Sr. Five of these samples were further analyzed for Sm, Nd, Sr, and Pb isotope ratios. Seventeen samples were studied under the microscope and three samples were analyzed by microprobe for their pyroxene compositions. Based on petrographic studies xenoliths were divided into three groups. Fine grained xenoliths (groups I and II) probably formed from metamorphosed MORB-like basalts, whereas coarse grained xenoliths (group III) were apparently derived from cumulate minerals that crystallized from the Calbuco magma. The fine grained xenoliths were probably entrained in magma at intermediate levels of the crust, near the stability limit of amphibole to form pyroxene and plagioclase. In the coarse grained xenoliths amphibole that formed at depth dehydrated as the xenoliths were brought to the surface. The country rocks are apparently unrelated to the xenoliths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of world-class mineral deposits occur in Mesozoic and Tertiary rocks of the Guerrero terrane. New Pb isotope analyses of various crustal units and ores from distinct subterranes of the Guerrero terrane are presented to trace metal sources in these deposits and infer source reservoirs. New Sr and Nd isotope results are provided to gain insight into the provenance of the crustal rocks from the Guerrero terrane. Triassic schist samples from the Arteaga Complex and Triassic-Jurassic phyllite and slate samples from the Tejupilco metamorphic suite contain radiogenic Pb (206Pb/204Pb = 18.701–19.256) relative to bulk earth models. Cretaceous sedimentary rocks of the Zihuatanejo Sequence are more radiogenic (206Pb/204Pb = 18.763–19.437) than samples from the Huetamo Sequence (206Pb/204Pb = 18.630–18.998). Tertiary intrusive rocks from La Verde, Inguaran, La Esmeralda, and El Malacate plot to the right of the average Pb crust evolution curve of Stacey and Kramers (206Pb/204Pb = 18.705–19.033). Ores from the La Verde and La Esmeralda porphyry copper deposits yield isotopic ratios (206Pb/204Pb = 18.678–18.723) that are generally less radiogenic than the host igneous rocks, but plot within the field defined by the sedimentary rocks from the Huetamo Sequence. Tertiary intrusive rocks from the Zimapan and La Negra districts in the Sierra Madre terrane plot above and to the right of the Stacey-Kramers reference line (206Pb/204Pb = 18.804–18.972). Lead isotope ratios of ore minerals from the Zimapan and La Negra skarn mines ( 206Pb/204Pb = 18.775–18.975) resemble those of the associated igneous rocks, implying a magmatic Pb input in the skarn deposits. New Sr and Nd isotope data on metamorphic rocks (87Sr/ 86Sr = 0.707757–0.726494 and 143Nd/144 Nd = 0.512109–0.512653) suggest that the basement of the Guerrero terrane originated from sources that had been derived from an old cratonic area. The narrow ranges and generally low 87Sr/86Sr ratios (0.704860–0.705755) and 143Nd/144Nd values (0.512765–0.512772) above that of bulk earth for igneous rocks from Inguaran, El Malacate, and La Esmeralda suggest a relatively low degree of crustal contamination. However, the isotopic values for the La Verde site (87Sr/86Sr = 0.708784 and 143Nd/144Nd = 0.512640) may indicate the involvement of a more evolved crustal component.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Andean Southern Volcanic Zone (SVZ) is a vast and complex continental arc that has been studied extensively to provide an understanding of arc-magma genesis, the origin and chemical evolution of the continental crust, and geochemical compositions of volcanic products. The present study focuses on distinguishing the magma/sub-arc crustal interaction of eruptive products from the Azufre-Planchon-Peteroa (APP 35°15'S) volcanic center and other major centers in the Central SVZ (CSVZ 37°S–42°S), Transitional SVZ (TSVZ 34.3–37.0°S), and Northern SVZ (NSVZ 33°S–34°30'S). New Hf and Nd isotopic and trace element data for SVZ centers are consistent with former studies that these magmas experienced variable depths of crystal fractionation, and that crustal assimilation is restricted to the lower crustal depths with an apparent role of garnet. Thermobarometric calculations applied to magma compositions constrain the depth of magma separation from mantle sources in all segments of the SVZ to(70-90 km). Magmatic separation at the APP complex occurs at an average depth of ~50 km which is confined to the mantle lithosphere and the base of the crust suggesting localized thermal abrasion both reservoirs. Thermobarometric calculations indicate that CSVZ primary magmas arise from a similar average depth of (~54 km) which confines magma separation to the asthenospheric mantle. The northwards along-arc Sr-Nd-Hf isotopic data and LREE enrichment accompanied with HREE depletion of SVZ mafic magmas correlates well with northward increasing crustal thickness and decreasing primary melt separation from mantle source regions indicating an increased involvement of lower crustal components in SVZ magma petrogenesis. ^ The study concludes that the development of mature subduction zones over millions of years of continuous magmatism requires that mafic arc derived melts stagnate at lower crustal levels due to density similarities and emplace at lower crustal depths. Basaltic underplating creates localized hot zone environments below major magmatic centers. These regions of high temperature/partial melting, and equilibration with underplated mafic rocks provides the mechanism that controls trace element and isotopic variability of primary magmas of the TSVZ and NSVZ from their baseline CSVZ-like precursors.^