3 resultados para Six Sigma Technique
em Digital Commons at Florida International University
Resumo:
This research document is motivated by the need for a systemic, efficient quality improvement methodology at universities. There exists no methodology designed for a total quality management (TQM) program in a university. The main objective of this study is to develop a TQM Methodology that enables a university to efficiently develop an integral total quality improvement (TQM) Plan. ^ Current research focuses on the need of improving the quality of universities, the study of the perceived best quality universities, and the measurement of the quality of universities through rankings. There is no evidence of research on how to plan for an integral quality improvement initiative for the university as a whole, which is the main contribution of this study. ^ This research is built on various reference TQM models and criteria provided by ISO 9000, Baldrige and Six Sigma; and educational accreditation criteria found in ABET and SACS. The TQM methodology is proposed by following a seven-step metamethodology. The proposed methodology guides the user to develop a TQM plan in five sequential phases: initiation, assessment, analysis, preparation and acceptance. Each phase defines for the user its purpose, key activities, input requirements, controls, deliverables, and tools to use. The application of quality concepts in education and higher education is particular; since there are unique factors in education which ought to be considered. These factors shape the quality dimensions in a university and are the main inputs to the methodology. ^ The proposed TQM Methodology is used to guide the user to collect and transform appropriate inputs to a holistic TQM Plan, ready to be implemented by the university. Different input data will lead to a unique TQM plan for the specific university at the time. It may not necessarily transform the university into a world-class institution, but aims to strive for stakeholder-oriented improvements, leading to a better alignment with its mission and total quality advancement. ^ The proposed TQM methodology is validated in three steps. First, it is verified by going through a test activity as part of the meta-methodology. Secondly, the methodology is applied to a case university to develop a TQM plan. Lastly, the methodology and the TQM plan both are verified by an expert group consisting of TQM specialists and university administrators. The proposed TQM methodology is applicable to any university at all levels of advancement, regardless of changes in its long-term vision and short-term needs. It helps to assure the quality of a TQM plan, while making the process more systemic, efficient, and cost effective. This research establishes a framework with a solid foundation for extending the proposed TQM methodology into other industries. ^
Resumo:
With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. ^ The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.^
Resumo:
With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.