4 resultados para Single magnetic atom
em Digital Commons at Florida International University
Resumo:
This work is the first work using patterned soft underlayers in multilevel three-dimensional vertical magnetic data storage systems. The motivation stems from an exponentially growing information stockpile, and a corresponding need for more efficient storage devices with higher density. The world information stockpile currently exceeds 150EB (ExaByte=1x1018Bytes); most of which is in analog form. Among the storage technologies (semiconductor, optical and magnetic), magnetic hard disk drives are posed to occupy a big role in personal, network as well as corporate storage. However; this mode suffers from a limit known as the Superparamagnetic limit; which limits achievable areal density due to fundamental quantum mechanical stability requirements. There are many viable techniques considered to defer superparamagnetism into the 100's of Gbit/in2 such as: patterned media, Heat-Assisted Magnetic Recording (HAMR), Self Organized Magnetic Arrays (SOMA), antiferromagnetically coupled structures (AFC), and perpendicular magnetic recording. Nonetheless, these techniques utilize a single magnetic layer; and can thusly be viewed as two-dimensional in nature. In this work a novel three-dimensional vertical magnetic recording approach is proposed. This approach utilizes the entire thickness of a magnetic multilayer structure to store information; with potential areal density well into the Tbit/in2 regime. ^ There are several possible implementations for 3D magnetic recording; each presenting its own set of requirements, merits and challenges. The issues and considerations pertaining to the development of such systems will be examined, and analyzed using empirical and numerical analysis techniques. Two novel key approaches are proposed and developed: (1) Patterned soft underlayer (SUL) which allows for enhanced recording of thicker media, (2) A combinatorial approach for 3D media development that facilitates concurrent investigation of various film parameters on a predefined performance metric. A case study is presented using combinatorial overcoats of Tantalum and Zirconium Oxides for corrosion protection in magnetic media. ^ Feasibility of 3D recording is demonstrated, and an emphasis on 3D media development is emphasized as a key prerequisite. Patterned SUL shows significant enhancement over conventional "un-patterned" SUL, and shows that geometry can be used as a design tool to achieve favorable field distribution where magnetic storage and magnetic phenomena are involved. ^
Resumo:
A number of patterning methods including conventional photo-lithography and E-beam lithography have been employed to pattern devices with critical dimensions of submicrometer levels. The methods of device fabrication by lithography and multilevel processing are usually specific to the chemical and physical properties of the etchants and materials used, and require a number of processing steps. As an alternative, focused ion beam (FIB) lithography is a unique and straightforward tool to rapidly develop nanomagnetic prototyping devices. This feature of FIB is critical to conduct the basic study necessary to advance the state-of-the-art in magnetic recording. ^ The dissertation develops a specific design of nanodevices and demonstrates FIB-fabricated stable and reproducible magnetic nanostructures with a critical dimension of about 10 nm. The project included the fabrication of a patterned single and multilayer magnetic media with areal densities beyond 10 Terabit/in 2. Each block had perpendicular or longitudinal magnetic anisotropy and a single domain structure. The purpose was to demonstrate how the ability of FIB to directly etch nanoscale patterns allowed exploring (even in the academic environment) the true physics of various types of nanostructures. ^ Another goal of this study was the investigation of FIB patterned magnetic media with a set of characterization tools: e.g. Spinstand Guzik V2002, magnetic force microscopy, scanning electron microscopy with energy dispersive system and wavelength dispersive system. ^ In the course of this work, a unique prototype of a record high density patterned magnetic media device capable of 10 terabit/in 2 was built. The read/write testing was performed by a Guzik spinstand. The readback signals were recorded and analyzed by a digital oscilloscope. A number of different configurations for writing and reading information from a magnetic medium were explored. The prototype transducers for this work were fabricated via FIB trimming of different magnetic recording heads. ^
Resumo:
Hemoproteins are a very important class of enzymes in nature sharing the essentially same prosthetic group, heme, and are good models for exploring the relationship between protein structure and function. Three important hemoproteins, chloroperoxidase (CPO), horseradish peroxidase (HRP), and cytochrome P450cam (P450cam), have been extensively studied as archetypes for the relationship between structure and function. In this study, a series of 1D and 2D NMR experiments were successfully conducted to contribute to the structural studies of these hemoproteins. ^ During the epoxidation of allylbenzene, CPO is converted to an inactive green species with the prosthetic heme modified by addition of the alkene plus an oxygen atom forming a five-membered chelate ring. Complete assignment of the NMR resonances of the modified porphyrin extracted and demetallated from green CPO unambiguously established the structure of this porphyrin as an NIII-alkylated product. A novel substrate binding motif of CPO was proposed from this concluded regiospecific N-alkylation structure. ^ Soybean peroxidase (SBP) is considered as a more stable, more abundant and less expensive substitute of HRP for industrial applications. A NMR study of SBP using 1D and 2D NOE methods successfully established the active site structure of SBP and consequently fills in the blank of the SBP NMR study. All of the hyperfine shifts of the SBP-CN- complex are unambiguously assigned together with most of the prosthetic heme and all proximal His170 resonances identified. The active site structure of SBP revealed by this NMR study is in complete agreement with the recombinant SBP crystal structure and is highly similar to that of the HRP with minor differences. ^ The NMR study of paramagnetic P450cam had been greatly restricted for a long time. A combination of 2D NMR methods was used in this study for P450cam-CN - complexes with and without camphor bound. The results lead to the first unequivocal assignments of all heme hyperfine-shifted signals, together with certain correlated diamagnetic resonances. The observed alternation of the assigned novel proximal cysteine β-CH2 resonances induced by camphor binding indicated a conformational change near the proximal side.^
Resumo:
Atomic beam experiments are limited by intensity. Intensity limitations are specially critical in the measurements of metastable atoms, since their relative population is several order of magnitude smaller than the beam population. This thesis provides a method for increasing the intensity of metastable argon and neon beams effusing from a hot cathode, glow discharge by use of a longitudinal magnetic field. The argon and neon metastable atom intensities have been measured for a range of discharge pressure, voltage, and current for a magnetic field strengths from 0 to 31 mT. For both argon and neon, the metastable atom beam intensity rises to a maximum value about one order of magnitude above the zero field case. A qualitative discussion of the theory of this phenomenon is also presented.