4 resultados para Single Molecule Magnets (SMMs), 1H NMR, 13C NMR, residual dipolar couplings (RDCs)

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bile pigment bilirubin-IXα is the degradative product of heme, distributed among mammals and some other vertebrates. It can be recognized as the pigment responsible for the yellow color of jaundice and healing bruises. In this paper we present the first example of the isolation of bilirubin in plants. The compound was isolated from the brilliant orange-colored arils of Strelitzia nicolai, the white bird of paradise tree, and characterized by HPLC−ESMS, UV−visible, 1H NMR, and 13C NMR spectroscopy, as well as comparison with an authentic standard. This discovery indicates that plant cyclic tetrapyrroles may undergo degradation by a previously unknown pathway. Preliminary analyses of related plants, including S. reginae, the bird of paradise, also revealed bilirubin in the arils and flowers, indicating that the occurrence of bilirubin is not limited to a single species or tissue type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strelitziaceae is a tropical monocot family comprising three genera and seven species: Ravenala Adans and Phenkospermum Endl., which are monotypic, and five species of Strelitzia Aiton. All species produce woody capsular fruits that contain vibrantly colored arillate seeds. Arils of the Strelitzia species are orange, those of Phenakospermum are red, and those of Ravenala are blue. Unlike most plant pigments, which degrade after cell death, aril pigments in the family persist for decades. Chemical properties of the compounds are unusual, and do not match those of known pigment classes (carotenoids, flavonoids, betalains, and the chlorophylls). I isolated the orange pigment from the arils of Strelitzia nicolai, and performed HPLC-ESMS, UV-visible, 1H NMR and 13C NMR analyses to determine its chemical structure. These data indicated the pigment was bilirubin-IX, an orange-yellow tetrapyrrole previously known only in mammals and some other vertebrates as the breakdown product of heme. Although related tetrapyrroles are ubiquitous throughout the plant kingdom and include vital biosynthetic products such as chlorophyll and phytochromobilin, this is the first report of bilirubin in a plant, and evidence of an additional biosynthetic pathway producing orange coloration in flowers and fruits. ^ Given the unexpected presence of bilirubin, Iexamined the fruits and flowers of twelve additional angiosperm species in diverse orders for the presence of bilirubin using HPLC and LC-MS. Bilirubin was present in ten species from the orders Zingiberales, Arecales, and Myrtales, indicating its wide distribution in the plant kingdom. Bilirubin was present in low concentrations in all species except those within Strelitziaceae. It was present in particularly high concentrations in S. nicolai, S. reginae and P. guyannense, and is thus responsible for producing color in these species. ^ No studies have examined the evolutionary relationship among all species in the family. Thus, I also constructed a molecular phylogeny of the family. This information, combined with further studies on the distribution and synthesis of bilirubin in plants, will provide a basis for understanding the evolutionary history of this pigment in the plant kingdom.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions of nitrones with free radicals have been widely studied both in vitro and in vivo. In comparison to classical chain-breaking phenolic antioxidants (such as Vitamin E and butylated hydroxytoluene [BHT]), conventional phenyl-substituted nitrones have much higher oxidation potentials. Azulenyl-substituted nitrones have lower oxidation potentials than conventional nitrones and react efficiently with free radicals in vitro and in vivo. The design and synthesis of novel azulenyl nitrones with yet lower oxidation potentials, prepared from commercially available guaiazulene, has produced several 1,2-trans -bis-azulenyl ethene compounds with enhanced antioxidant activity. A convenient 1H NMR-based assay for assessing the potency of chain-breaking antioxidants has shown these novel nitrones to be more than 300 times more potent in inhibiting the free radical-mediated aerobic peroxidation of cumene than α-phenyl-N-tert-butyl nitrone (PBN) and the experimental stroke drug NXY-059. The low oxidation potential of these novel nitrones and the stability of the corresponding radical cation have been implicated in the explanation of the increased antioxidant potency of these second generation azulenyl nitrones. Based on the results of these in vitro studies, the first of these novel compounds, stilbazulenyl nitrone (STAZN), was investigated in animal models of disease known to involve free radical-mediated pathology. In view of STAZN's marked lipophilicity and anticipated blood brain barrier permeability, neurodegenerative conditions were investigated. All animal experiments were performed at the University of Miami by members of the Ginsberg research group. STAZN was neuroprotective in traumatic brain injury in rats. It also provided exceptional neuroprotection in an animal model of stroke. The concentration of STAZN required for neuroprotection was 300–600 times less than doses of PBN or NXY-059 required for similar effect. Thus, the benefits of greater antioxidant potency sought by lowering the oxidation potential of nitrones appear to have been reaped both in vitro and in vivo. In spite of the challenges and difficulties in understanding free radical-mediated pathology, this work establishes that considerations such as redox potential and lipophilicity can provide a very fruitful rationale for the design of therapeutic azulenyl nitrone antioxidants. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kainate receptors are one of the three major groups of ionotropic glutamate receptors in the mammalian central nervous system. They are so named after their most potent agonist, kainic acid (KA), a natural product isolated from the seaweed Diginea simplex. This compound shows both neuroexcitatory and excitotoxic activities, and is an important pharmacological tool for neurophysiological studies. We predict that the more synthetically accessible aza analogues of kainic acid, could act as functional mimics of KA. These could be produced by the 1,3-dipolar cycloaddition of diazoalkanes with trans glutaconate esters. ^ 1,3-Dipolar cycloadditions have been shown to produce 1-pyrazolines that isomerize into 2-pyrazolines. The 1- and 2-pyrazolines can be precursors to aza analogs of kainoids. The regioselectivity, relative stereochemistry and isomerization of the 1-pyrazolines into 2-pyrazolines have been evaluated. Reductions of the 1- and 2-pyrazolines produced aza analogs of kainoids. TMS diazomethane was used as the dipole in 1,3-dipolar cycloaddition reactions leading to aza KA analogs via 2-pyrazolines. A systematic study of cycloaddition-isomerization processes involving TMS-diazomethane and various α, β-unsaturated dipolarophiles has been undertaken. 1H-NMR monitoring of the reaction mixture compositions during the cycloaddition reaction revealed evidence of retro-dipolar cycloaddition processes. Faster formation of 4,5- trans-1-pyrazoline at the beginning of the reaction and subsequent isomerization of this product into 4,5-cis-1-pyrazoline via a retro-dipolar cycloaddition has been observed. Increased reaction time and/or reaction temperature preferentially caused the irreversible isomerization of 4,5-cis-1-pyrazoline into 4,5-cis-2-pyrazoline, which led to high yields of 4,5-cis-2-pyrazolines in the overall process. ^ Two syntheses of the 5-unsubstituted aza-kainic acid have been performed; first, via the reduction of the TMS-eliminated 2-pyrazoline from TMS diazomethane; second by the direct reduction of 1-pyrazoline with Hg/Al-amalgam. 5-Phenyl aza-kainic acid has been produced by direct reduction of 1-pyrazoline, obtained in the reaction of phenyldiazomethane and dibenzyl glutaconate, with Hg/Al-amalgam. ^ Current responses to aza kainate analogs in Aplysia whole cell buccal ganglia indicate potent neuroexcitatory activity. The repetitive exposure of neuronal cells to the 5-unsubstituted aza-kainic acid led to non-desensitizing current responses, showing both binding affinity and neuronal ion-channel activation by the synthesized agonist compound. ^