16 resultados para Simulation and modeling applications
em Digital Commons at Florida International University
Resumo:
Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite's Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.
Resumo:
Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite’s Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.
Resumo:
Small errors proved catastrophic. Our purpose to remark that a very small cause which escapes our notice determined a considerable effect that we cannot fail to see, and then we say that the effect is due to chance. Small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. When dealing with any kind of electrical device specification, it is important to note that there exists a pair of test conditions that define a test: the forcing function and the limit. Forcing functions define the external operating constraints placed upon the device tested. The actual test defines how well the device responds to these constraints. Forcing inputs to threshold for example, represents the most difficult testing because this put those inputs as close as possible to the actual switching critical points and guarantees that the device will meet the Input-Output specifications. ^ Prediction becomes impossible by classical analytical analysis bounded by Newton and Euclides. We have found that non linear dynamics characteristics is the natural state of being in all circuits and devices. Opportunities exist for effective error detection in a nonlinear dynamics and chaos environment. ^ Nowadays there are a set of linear limits established around every aspect of a digital or analog circuits out of which devices are consider bad after failing the test. Deterministic chaos circuit is a fact not a possibility as it has been revived by our Ph.D. research. In practice for linear standard informational methodologies, this chaotic data product is usually undesirable and we are educated to be interested in obtaining a more regular stream of output data. ^ This Ph.D. research explored the possibilities of taking the foundation of a very well known simulation and modeling methodology, introducing nonlinear dynamics and chaos precepts, to produce a new error detector instrument able to put together streams of data scattered in space and time. Therefore, mastering deterministic chaos and changing the bad reputation of chaotic data as a potential risk for practical system status determination. ^
Resumo:
Developing analytical models that can accurately describe behaviors of Internet-scale networks is difficult. This is due, in part, to the heterogeneous structure, immense size and rapidly changing properties of today's networks. The lack of analytical models makes large-scale network simulation an indispensable tool for studying immense networks. However, large-scale network simulation has not been commonly used to study networks of Internet-scale. This can be attributed to three factors: 1) current large-scale network simulators are geared towards simulation research and not network research, 2) the memory required to execute an Internet-scale model is exorbitant, and 3) large-scale network models are difficult to validate. This dissertation tackles each of these problems. ^ First, this work presents a method for automatically enabling real-time interaction, monitoring, and control of large-scale network models. Network researchers need tools that allow them to focus on creating realistic models and conducting experiments. However, this should not increase the complexity of developing a large-scale network simulator. This work presents a systematic approach to separating the concerns of running large-scale network models on parallel computers and the user facing concerns of configuring and interacting with large-scale network models. ^ Second, this work deals with reducing memory consumption of network models. As network models become larger, so does the amount of memory needed to simulate them. This work presents a comprehensive approach to exploiting structural duplications in network models to dramatically reduce the memory required to execute large-scale network experiments. ^ Lastly, this work addresses the issue of validating large-scale simulations by integrating real protocols and applications into the simulation. With an emulation extension, a network simulator operating in real-time can run together with real-world distributed applications and services. As such, real-time network simulation not only alleviates the burden of developing separate models for applications in simulation, but as real systems are included in the network model, it also increases the confidence level of network simulation. This work presents a scalable and flexible framework to integrate real-world applications with real-time simulation.^
Resumo:
The objectives of this research are to analyze and develop a modified Principal Component Analysis (PCA) and to develop a two-dimensional PCA with applications in image processing. PCA is a classical multivariate technique where its mathematical treatment is purely based on the eigensystem of positive-definite symmetric matrices. Its main function is to statistically transform a set of correlated variables to a new set of uncorrelated variables over $\IR\sp{n}$ by retaining most of the variations present in the original variables.^ The variances of the Principal Components (PCs) obtained from the modified PCA form a correlation matrix of the original variables. The decomposition of this correlation matrix into a diagonal matrix produces a set of orthonormal basis that can be used to linearly transform the given PCs. It is this linear transformation that reproduces the original variables. The two-dimensional PCA can be devised as a two successive of one-dimensional PCA. It can be shown that, for an $m\times n$ matrix, the PCs obtained from the two-dimensional PCA are the singular values of that matrix.^ In this research, several applications for image analysis based on PCA are developed, i.e., edge detection, feature extraction, and multi-resolution PCA decomposition and reconstruction. ^
Resumo:
This dissertation is about the research carried on developing an MPS (Multipurpose Portable System) which consists of an instrument and many accessories. The instrument is portable, hand-held, and rechargeable battery operated, and it measures temperature, absorbance, and concentration of samples by using optical principles. The system also performs auxiliary functions like incubation and mixing. This system can be used in environmental, industrial, and medical applications. ^ Research emphasis is on system modularity, easy configuration, accuracy of measurements, power management schemes, reliability, low cost, computer interface, and networking. The instrument can send the data to a computer for data analysis and presentation, or to a printer. ^ This dissertation includes the presentation of a full working system. This involved integration of hardware and firmware for the micro-controller in assembly language, software in C and other application modules. ^ The instrument contains the Optics, Transimpedance Amplifiers, Voltage-to-Frequency Converters, LCD display, Lamp Driver, Battery Charger, Battery Manager, Timer, Interface Port, and Micro-controller. ^ The accessories are a Printer, Data Acquisition Adapter (to transfer the measurements to a computer via the Printer Port and expand the Analog/Digital conversion capability), Car Plug Adapter, and AC Transformer. This system has been fully evaluated for fault tolerance and the schemes will also be presented. ^
Resumo:
Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes. Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ∼5.7 cm2/V·s at low operation voltage of <5 V and a low turn-on voltage of ∼0.5 V with a sub threshold swing of ∼85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (∼106) and mobility (∼28 cm2/V·s). A bottom gated FET showed large hysteresis of ∼5.0 to 8.0 V which was significantly reduced to ∼1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ∼46% and a minimum detection limit of ∼1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases. Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ∼88.80% light transmittance and ∼1.1742Ω/sq k sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.
Resumo:
Chromium (Cr) is a metal of particular environmental concern, owing to its toxicity and widespread occurrence in groundwater, soil, and soil solution. A combination of hydrological, geochemical, and microbiological processes governs the subsurface migration of Cr. Little effort has been devoted to examining how these biogeochemical reactions combine with hydrologic processes influence Cr migration. This study has focused on the complex problem of predicting the Cr transport in laboratory column experiments. A 1-D reactive transport model was developed and evaluated against data obtained from laboratory column experiments. ^ A series of dynamic laboratory column experiments were conducted under abiotic and biotic conditions. Cr(III) was injected into columns packed with β-MnO 2-coated sand at different initial concentrations, variable flow rates, and at two different pore water pH (3.0 and 4.0). In biotic anaerobic column experiments Cr(VI) along with lactate was injected into columns packed with quartz sand or β-MnO2-coated sand and bacteria, Shewanella alga Simidu (BrY-MT). A mathematical model was developed which included advection-dispersion equations for the movement of Cr(III), Cr(VI), dissolved oxygen, lactate, and biomass. The model included first-order rate laws governing the adsorption of each Cr species and lactate. The equations for transport and adsorption were coupled with nonlinear equations for rate-limited oxidation-reduction reactions along with dual-monod kinetic equations. Kinetic batch experiments were conducted to determine the reduction of Cr(VI) by BrY-MT in three different substrates. Results of the column experiments with Cr(III)-containing influent solutions demonstrate that β-MnO2 effectively catalyzes the oxidation of Cr(III) to Cr(VI). For a given influent concentration and pore water velocity, oxidation rates are higher, and hence effluent concentrations of Cr(VI) are greater, at pH 4 relative to pH 3. Reduction of Cr(VI) by BrY-MT was rapid (within one hour) in columns packed with quartz sand, whereas Cr(VI) reduction by BrY-MT was delayed (57 hours) in presence of β-MnO 2-coated sand. BrY-MT grown in BHIB (brain heart infusion broth) reduced maximum amount of Cr(VI) to Cr(III) followed by TSB (tryptic soy broth) and M9 (minimum media). The comparisons of data and model results from the column experiments show that the depths associated with Cr(III) oxidation and transport within sediments of shallow aquatic systems can strongly influence trends in surface water quality. The results of this study suggests that carefully performed, laboratory column experiments is a useful tool in determining the biotransformation of redox-sensitive metals even in the presence of strong oxidant, like β-MnO2. ^
Resumo:
Although group 14 organometallic compounds (Si, Sn) have been well developed as transmetallation reagents in cross-coupling reactions, the application of organogermanium compounds as cross-coupling reagents is still a relatively new area with few papers published. This study aimed to develop methods for the synthesis of new classes of vinyl germane and vinyl silane compounds, mainly Z and E tris(trimethylsilyl)germanes and silanes, which were then applied to Pd-catalyzed cross-couplings with aryl and alkenyl halides. The stereoselective radical-mediated desulfonylation of vinyl sulfones with tris(trimethyl)germanium or silane hydrides provided access to the synthesis of trans vinyl germanes or silanes. Alternatively hydrogermylation or hydrosilylation of terminal alkynes gave cis vinyl germanes or silanes. The application of these new classes of organometallic compounds in cross-coupling reactions with various aryl and alkenyl halides under aqueous [NaOH/H2O2/Pd(PPh 3)4] and anhydrous [KH/t-BuOOH/Pd(PPh 3)4] oxidative conditions were investigated. ^ It was found that the vinyl tris(trimethylsilyl)germanes successfully underwent Pd-catalyzed cross-couplings with aryl and alkenyl halides and aryl triflates under aqueous and anhydrous oxidative conditions. These procedures provided examples of "ligand-free" Pd-catalyzed coupling of organogermanes with aryl and alkenyl halides. Interestingly, couplings with fluorinated vinyl germanes appeared to occur more easily than with the corresponding (α-fluoro)vinyl stannanes and silanes since neither addition of an extra ligand nor activation with fluoride was necessary. The vinyl tris(trimethyl)silanes were found to be alternative substrates for the Hiyama reaction. The coupling of TTMS-silanes with various aryl, heteroaryl as well as alkenyl halides proceeded smoothly upon treatment with hydrogen peroxide in the presence of sodium hydroxide and fluoride ion. ^
Resumo:
Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. ^ Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. ^ Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. ^ It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. ^ Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.^
Resumo:
A two-dimensional, 2D, finite-difference time-domain (FDTD) method is used to analyze two different models of multi-conductor transmission lines (MTL). The first model is a two-conductor MTL and the second is a threeconductor MTL. Apart from the MTL's, a three-dimensional, 3D, FDTD method is used to analyze a three-patch microstrip parasitic array. While the MTL analysis is entirely in time-domain, the microstrip parasitic array is a study of scattering parameter Sn in the frequency-domain. The results clearly indicate that FDTD is an efficient and accurate tool to model and analyze multiconductor transmission line as well as microstrip antennas and arrays.
Resumo:
With the growing commercial importance of the Internet and the development of new real-time, connection-oriented services like IP-telephony and electronic commerce resilience is becoming a key issue in the design of TP-based networks. Two emerging technologies, which can accomplish the task of efficient information transfer, are Multiprotocol Label Switching (MPLS) and Differentiated Services. A main benefit of MPLS is the ability to introduce traffic-engineering concepts due to its connection-oriented characteristic. With MPLS it is possible to assign different paths for packets through the network. Differentiated services divides traffic into different classes and treat them differently, especially when there is a shortage of network resources. In this thesis, a framework was proposed to integrate the above two technologies and its performance in providing load balancing and improving QoS was evaluated. Simulation and analysis of this framework demonstrated that the combination of MPLS and Differentiated services is a powerful tool for QoS provisioning in IP networks.
Resumo:
Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.
Resumo:
Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) were utilized for the first time to enable important functions, such as (i) field-controlled high-efficacy dissipation-free targeted drug delivery system and on-demand release at the sub-cellular level, (ii) non-invasive energy-efficient stimulation of deep brain tissue at body temperature, and (iii) a high-sensitivity contrasting agent to map the neuronal activity in the brain non-invasively. First, this dissertation specifically focuses on using MENs as energy-efficient and dissipation-free field-controlled nano-vehicle for targeted delivery and on-demand release of a anti-cancer Paclitaxel (Taxol) drug and a anti-HIV AZT 5’-triphosphate (AZTTP) drug from 30-nm MENs (CoFe2O4-BaTiO3) by applying low-energy DC and low-frequency (below 1000 Hz) AC fields to separate the functions of delivery and release, respectively. Second, this dissertation focuses on the use of MENs to non-invasively stimulate the deep brain neuronal activity via application of a low energy and low frequency external magnetic field to activate intrinsic electric dipoles at the cellular level through numerical simulations. Third, this dissertation describes the use of MENs to track the neuronal activities in the brain (non-invasively) using a magnetic resonance and a magnetic nanoparticle imaging by monitoring the changes in the magnetization of the MENs surrounding the neuronal tissue under different states. The potential therapeutic and diagnostic impact of this innovative and novel study is highly significant not only in HIV-AIDS, Cancer, Parkinson’s and Alzheimer’s disease but also in many CNS and other diseases, where the ability to remotely control targeted drug delivery/release, and diagnostics is the key.
Resumo:
High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system's high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.