3 resultados para Signal detection
em Digital Commons at Florida International University
Resumo:
Given the growing number of wrongful convictions involving faulty eyewitness evidence and the strong reliance by jurors on eyewitness testimony, researchers have sought to develop safeguards to decrease erroneous identifications. While decades of eyewitness research have led to numerous recommendations for the collection of eyewitness evidence, less is known regarding the psychological processes that govern identification responses. The purpose of the current research was to expand the theoretical knowledge of eyewitness identification decisions by exploring two separate memory theories: signal detection theory and dual-process theory. This was accomplished by examining both system and estimator variables in the context of a novel lineup recognition paradigm. Both theories were also examined in conjunction with confidence to determine whether it might add significantly to the understanding of eyewitness memory. ^ In two separate experiments, both an encoding and a retrieval-based manipulation were chosen to examine the application of theory to eyewitness identification decisions. Dual-process estimates were measured through the use of remember-know judgments (Gardiner & Richardson-Klavehn, 2000). In Experiment 1, the effects of divided attention and lineup presentation format (simultaneous vs. sequential) were examined. In Experiment 2, perceptual distance and lineup response deadline were examined. Overall, the results indicated that discrimination and remember judgments (recollection) were generally affected by variations in encoding quality and response criterion and know judgments (familiarity) were generally affected by variations in retrieval options. Specifically, as encoding quality improved, discrimination ability and judgments of recollection increased; and as the retrieval task became more difficult there was a shift toward lenient choosing and more reliance on familiarity. ^ The application of signal detection theory and dual-process theory in the current experiments produced predictable results on both system and estimator variables. These theories were also compared to measures of general confidence, calibration, and diagnosticity. The application of the additional confidence measures in conjunction with signal detection theory and dual-process theory gave a more in-depth explanation than either theory alone. Therefore, the general conclusion is that eyewitness identifications can be understood in a more complete manor by applying theory and examining confidence. Future directions and policy implications are discussed. ^
Resumo:
Benzodiazepines are among the most prescribed compounds for anti-anxiety and are present in many toxicological screens. These drugs are also prominent in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to their potency, a low dose of these compounds is often administered to victims; therefore, the target detection limit for these compounds in biological samples is 10 ng/mL. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed. ^ The goal of this dissertation was to develop a rapid, specific screening technique for benzodiazepines in urine samples utilizing surface-enhanced Raman spectroscopy (SERS), which has previously been shown be capable of to detect trace quantities of pharmaceutical compounds in aqueous solutions. Surface enhanced Raman spectroscopy has the advantage of overcoming the low sensitivity and fluorescence effects seen with conventional Raman spectroscopy. The spectra are obtained by applying an analyte onto a SERS-active metal substrate such as colloidal metal particles. SERS signals can be further increased with the addition of aggregate solutions. These agents cause the nanoparticles to amass and form hot-spots which increase the signal intensity. ^ In this work, the colloidal particles are spherical gold nanoparticles in aqueous solution with an average size of approximately 30 nm. The optimum aggregating agent for the detection of benzodiazepines was determined to be 16.7 mM MgCl2, providing the highest signal intensities at the lowest drug concentrations with limits of detection between 0.5 and 127 ng/mL. A supported liquid extraction technique was utilized as a rapid clean extraction for benzodiazepines from urine at a pH of 5.0, allowing for clean extraction with limits of detection between 6 and 640 ng/mL. It was shown that at this pH other drugs that are prevalent in urine samples can be removed providing the selective detection of the benzodiazepine of interest. ^ This technique has been shown to provide rapid (less than twenty minutes), sensitive, and specific detection of benzodiazepines at low concentrations in urine. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases.^
Resumo:
Benzodiazepines are among the most prescribed compounds for anti-anxiety and are present in many toxicological screens. These drugs are also prominent in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to their potency, a low dose of these compounds is often administered to victims; therefore, the target detection limit for these compounds in biological samples is 10 ng/mL. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed. The goal of this dissertation was to develop a rapid, specific screening technique for benzodiazepines in urine samples utilizing surface-enhanced Raman spectroscopy (SERS), which has previously been shown be capable of to detect trace quantities of pharmaceutical compounds in aqueous solutions. Surface enhanced Raman spectroscopy has the advantage of overcoming the low sensitivity and fluorescence effects seen with conventional Raman spectroscopy. The spectra are obtained by applying an analyte onto a SERS-active metal substrate such as colloidal metal particles. SERS signals can be further increased with the addition of aggregate solutions. These agents cause the nanoparticles to amass and form hot-spots which increase the signal intensity. In this work, the colloidal particles are spherical gold nanoparticles in aqueous solution with an average size of approximately 30 nm. The optimum aggregating agent for the detection of benzodiazepines was determined to be 16.7 mM MgCl2, providing the highest signal intensities at the lowest drug concentrations with limits of detection between 0.5 and 127 ng/mL. A supported liquid extraction technique was utilized as a rapid clean extraction for benzodiazepines from urine at a pH of 5.0, allowing for clean extraction with limits of detection between 6 and 640 ng/mL. It was shown that at this pH other drugs that are prevalent in urine samples can be removed providing the selective detection of the benzodiazepine of interest. This technique has been shown to provide rapid (less than twenty minutes), sensitive, and specific detection of benzodiazepines at low concentrations in urine. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases.