14 resultados para Short-Term assessment of risk and treatability
em Digital Commons at Florida International University
Resumo:
A major consequence of contamination at the local level’s population as it relates to environmental health and environmental engineering is childhood lead poisoning. Environmental contamination is one of the pressing environmental concerns facing the world today. Current approaches often focus on large contaminated industrial size sites that are designated by regulatory agencies for site remediation. Prior to this study, there were no known published studies conducted at the local and smaller scale, such as neighborhoods, where often much of the contamination is present to remediate. An environmental health study of local lead-poisoning data in Liberty City, Little Haiti and eastern Little Havana in Miami-Dade County, Florida accounted for a disproportionately high number of the county’s reported childhood lead poisoning cases. An engineering system was developed and designed for a comprehensive risk management methodology that is distinctively applicable to the geographical and environmental conditions of Miami-Dade County, Florida. Furthermore, a scientific approach for interpreting environmental health concerns, while involving detailed environmental engineering control measures and methods for site remediation in contained media was developed for implementation. Test samples were obtained from residents and sites in those specific communities in Miami-Dade County, Florida (Gasana and Chamorro 2002). Currently lead does not have an Oral Assessment, Inhalation Assessment, and Oral Slope Factor; variables that are required to run a quantitative risk assessment. However, various institutional controls from federal agencies’ standards and regulation for contaminated lead in media yield adequate maximum concentration limits (MCLs). For this study an MCL of .0015 (mg/L) was used. A risk management approach concerning contaminated media involving lead demonstrates that the linkage of environmental health and environmental engineering can yield a feasible solution.
Resumo:
Pesticide monitoring in St. Lucie County by various local, state and federal agencies has indicated consistent residues of several pesticides, including ethion and bromacil. Although pesticides have long been known to pose a threat to non-target species and much background monitoring has been done, no pesticide aquatic risk assessment has been done in this geographical area. Several recognized United States Environmental Protection Agency (USEPA) methods of quantifying risk are employed here to include hazard quotients (HQ) and probabilistic modeling with sensitivity analysis. These methods are employed to characterize potential impacts to aquatic biota of the C-25 Canal and the Indian River Lagoon (in St. Lucie County, Florida) based on current agricultural pesticide use and drainage patterns. The model used in the analysis incorporates available physical-chemical property data, local hydrology, ecosystem information, and pesticide use practices. HQ's, probabilistic distributions, and field sample analyses resulted in high levels of concern (LOCs), which usually indicates a need for regulatory action, including restrictions on use, or cancellation. ^
Resumo:
An oligotrophic phosphorus (P) limited seagrass ecosystem in Florida Bay was experimentally fertilized in a unique way. Perches were installed to encourage seabirds to roost and deliver an external source of nutrients via defecation. Two treatments were examined: (1) a chronic 23-year fertilization and (2) an earlier 28-month fertilization that was discontinued when the chronic treatment was initiated. Because of the low mobility of P in carbonate sediments, we hypothesized long-term changes to ecosystem structure and function in both treatments. Structural changes in the chronic treatment included a shift in the dominant seagrass species from Thalassia testudinum to Halodule wrightii, large increases in epiphytic biomass and sediment chlorophyll-a, and a decline in species richness. Functional changes included increased benthic metabolism and quantum efficiency. Initial changes in the 28-month fertilization were similar, but after 23 years of nutrient depuration T. testudinum has reestablished itself as the dominant species. However, P remains elevated in the sediment and H. wrightii has maintained a presence. Functionally the discontinued treatment remains altered. Biomass exceeds that in the chronic treatment and indices of productivity, elevated relative to control, are not different from the chronic fertilization. Cessation of nutrient loading has resulted in a superficial return to the pre-disturbance character of the community, but due to the nature of P cycles functional changes persist.
Resumo:
Mexico harbors more than 10% of the planet’s endemic species. However, the integrity and biodiversity of many ecosystems is experiencing rapid transformation under the influence of a wide array of human and natural disturbances. In order to disentangle the effects of human and natural disturbance regimes at different spatial and temporal scales, we selected six terrestrial (temperate montane forests, montane cloud forests, tropical rain forests, tropical semi-deciduous forests, tropical dry forests, and deserts) and four aquatic (coral reefs, mangrove forests, kelp forests and saline lakes) ecosystems. We used semiquantitative statistical methods to assess (1) the most important agents of disturbance affecting the ecosystems, (2) the vulnerability of each ecosystem to anthropogenic and natural disturbance, and (3) the differences in ecosystem disturbance regimes and their resilience. Our analysis indicates a significant variation in ecological responses, recovery capacity, and resilience among ecosystems. The constant and widespread presence of human impacts on both terrestrial and aquatic ecosystems is reflected either in reduced area coverage for most systems, or reduced productivity and biodiversity, particularly in the case of fragile ecosystems (e.g., rain forests, coral reefs). In all cases, the interaction between historical human impacts and episodic high intensity natural disturbance (e.g., hurricanes, fires) has triggered a reduction in species diversity and induced significant changes in habitat distribution or species dominance. The lack of monitoring programs assessing before/after effects of major disturbances in Mexico is one of the major limitations to quantifying the commonalities and differences of disturbance effects on ecosystem properties.
Resumo:
Flocculent material (floc) is an important energy source in wetlands. In the Florida Everglades, floc is present in both freshwater marshes and coastal environments and plays a key role in food webs and nutrient cycling. However, not much is known about its environmental dynamics, in particular its biological sources and bio-reactivity. We analysed floc samples collected from different environments in the Florida Everglades and applied biomarkers and pigment chemotaxonomy to identify spatial and seasonal differences in organic matter sources. An attempt was made to link floc composition with algal and plant productivity. Spatial differences were observed between freshwater marsh and estuarine floc. Freshwater floc receives organic matter inputs from local periphyton mats, as indicated by microbial biomarkers and chlorophyll-a estimates. At the estuarine sites, the floc is dominated by mangrove as well as diatom inputs from the marine end-member. The hydroperiod (duration and depth of inundation) at the freshwater sites influences floc organic matter preservation, where the floc at the short-hydroperiod site is more oxidised likely due to periodic dry-down conditions. Seasonal differences in floc composition were not consistent and the few that were observed are likely linked to the primary productivity of the dominant biomass (periphyton in the freshwater marshes and mangroves in the estuarine zone). Molecular evidence for hydrological transport of floc material from the freshwater marshes to the coastal fringe was also observed. With the on-going restoration of the Florida Everglades, it is important to gain a better understanding of the biogeochemical dynamics of floc, including its sources, transformations and reactivity.
Resumo:
The environmental dynamics of dissolved organic matter (DOM) were characterized for a shallow, subtropical, seagrass-dominated estuarine bay, namely Florida Bay, USA. Large spatial and seasonal variations in DOM quantity and quality were assessed using dissolved organic C (DOC) measurements and spectrophotometric properties including excitation emission matrix (EEM) fluorescence with parallel factor analysis (PARAFAC). Surface water samples were collected monthly for 2 years across the bay. DOM characteristics were statistically different across the bay, and the bay was spatially characterized into four basins based on chemical characteristics of DOM as determined by EEM-PARAFAC. Differences between zones were explained based on hydrology, geomorphology, and primary productivity of the local seagrass community. In addition, potential disturbance effects from a very active hurricane season were identified. Although the overall seasonal patterns of DOM variations were not significantly affected on a bay-wide scale by this disturbance, enhanced freshwater delivery and associated P and DOM inputs (both quantity and quality) were suggested as potential drivers for the appearance of algal blooms in high impact areas. The application of EEM-PARAFAC proved to be ideally suited for studies requiring high sample throughput methods to assess spatial and temporal ecological drivers and to determine disturbance-induced impacts in aquatic ecosystems.
Resumo:
Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor's ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell's electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.
Resumo:
The Republic of Haiti struggles to sustainably manage its water resources. Public health is compromised by low levels of water supply, sanitation, and hygiene, and water resources are often contaminated and unsustainably allocated. While poor governance is often blamed for these shortcomings, the laws and institutions regulating water resources in Haiti are poorly understood, especially by the international community. This study brings together and analyzes Haitian water laws, assesses institutional capacities, and provides a case study of water management in northern Haiti in order to provide a more complete picture of the sector. Funded by the Inter-American Development Bank as part of the Water Availability, Quality and Integrated Water Resources Management in Northern Haiti (HA-T1179) Project, this study took place from January-July 2015, with the help of local experts and participating stakeholders. The results indicate that Haiti’s water law framework is highly fragmented, with overlapping mandates and little coordination between ministries at the national level, and ambiguous but unrealistic roles for subnational governments. A capacity assessment of institutions in northern Haiti illustrates that while local stakeholders are engaged, human and financial resources are insufficient to carry out statutory responsibilities. The findings suggest that water resources management planning should engage local governments and community fixtures while supplementing capacities with national or international support.
Resumo:
Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor’s ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell’s electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.
Resumo:
Natural, unenriched Everglades wetlands are known to be limited by phosphorus (P) and responsive to P enrichment. However, whole-ecosystem evaluations of experimental P additions are rare in Everglades or other wetlands. We tested the response of the Everglades wetland ecosystem to continuous, low-level additions of P (0, 5, 15, and 30 μg L−1 above ambient) in replicate, 100 m flow-through flumes located in unenriched Everglades National Park. After the first six months of dosing, the concentration and standing stock of phosphorus increased in the surface water, periphyton, and flocculent detrital layer, but not in the soil or macrophytes. Of the ecosystem components measured, total P concentration increased the most in the floating periphyton mat (30 μg L−1: mean = 1916 μg P g−1, control: mean = 149 μg P g−1), while the flocculent detrital layer stored most of the accumulated P (30 μg L−1: mean = 1.732 g P m−2, control: mean = 0.769 g P m−2). Significant short-term responses of P concentration and standing stock were observed primarily in the high dose (30 μg L−1 above ambient) treatment. In addition, the biomass and estimated P standing stock of aquatic consumers increased in the 30 and 5 μg L−1 treatments. Alterations in P concentration and standing stock occurred only at the upstream ends of the flumes nearest to the point source of added nutrient. The total amount of P stored by the ecosystem within the flume increased with P dosing, although the ecosystem in the flumes retained only a small proportion of the P added over the first six months. These results indicate that oligotrophic Everglades wetlands respond rapidly to short-term, low-level P enrichment, and the initial response is most noticeable in the periphyton and flocculent detrital layer.
Resumo:
Natural, unenriched Evergladeswetlands are known to be limited by phosphorus(P) and responsive to P enrichment. However,whole-ecosystem evaluations of experimental Padditions are rare in Everglades or otherwetlands. We tested the response of theEverglades wetland ecosystem to continuous,low-level additions of P (0, 5, 15, and30 μg L−1 above ambient) in replicate,100 m flow-through flumes located in unenrichedEverglades National Park. After the first sixmonths of dosing, the concentration andstanding stock of phosphorus increased in thesurface water, periphyton, and flocculentdetrital layer, but not in the soil or macrophytes. Of the ecosystem components measured, total P concentration increased the most in the floating periphyton mat (30 μg L−1: mean = 1916 μg P g−1, control: mean =149 μg P g−1), while the flocculentdetrital layer stored most of the accumulated P(30 μg L−1: mean = 1.732 g P m−2,control: mean = 0.769 g P m−2). Significant short-term responsesof P concentration and standing stock wereobserved primarily in the high dose (30 μgL−1 above ambient) treatment. Inaddition, the biomass and estimated P standingstock of aquatic consumers increased in the 30and 5 μg L−1 treatments. Alterationsin P concentration and standing stock occurredonly at the upstream ends of the flumes nearestto the point source of added nutrient. Thetotal amount of P stored by the ecosystemwithin the flume increased with P dosing,although the ecosystem in the flumes retainedonly a small proportion of the P added over thefirst six months. These results indicate thatoligotrophic Everglades wetlands respondrapidly to short-term, low-level P enrichment,and the initial response is most noticeable inthe periphyton and flocculent detrital layer.
Resumo:
An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. ^ The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can't be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications.^ Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. ^ Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.^
Resumo:
An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can’t be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications. Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.