3 resultados para Shared Resource
em Digital Commons at Florida International University
Resumo:
The purpose of this ethnographic study was to describe and explain the congruency of psychological preferences identified by the Myers-Briggs Type Indicator (MBTI) and the human resource development (HRD) role of instructor/facilitator. This investigation was conducted with 23 HRD professionals who worked in the Miami, Florida area as instructors/facilitators with adult learners in job-related contexts.^ The study was conducted using qualitative strategies of data collection and analysis. The research participants were selected through a purposive sampling strategy. Data collection strategies included: (a) administration and scoring of the MBTI, Form G, (b) open-ended and semi-structured interviews, (c) participant observations of the research subjects at their respective work sites and while conducting training sessions, (d) field notes, and (e) contact summary sheets to record field research encounters. Data analysis was conducted with the use of a computer program for qualitative analysis called FolioViews 3.1 for Windows. This included: (a) coding of transcribed interviews and field notes, (b) theme analysis, (c) memoing, and (d) cross-case analysis.^ The three major themes that emerged in relation to the congruency of psychological preferences and the role of instructor/facilitator were: (1) designing and preparing instruction/facilitation, (2) conducting training and managing group process, and (3) interpersonal relations and perspectives among instructors/facilitators.^ The first two themes were analyzed through the combination of the four Jungian personality functions. These combinations are: sensing-thinking (ST), sensing-feeling (SF), intuition-thinking (NT), and intuition-feeling (NF). The third theme was analyzed through the combination of the attitudes or energy focus and the judgment function. These combinations are: extraversion-thinking (ET), extraversion-feeling (EF), introversion-thinking (IT), and introversion-feeling (IF).^ A last area uncovered by this ethnographic study was the influence exerted by a training and development culture on the instructor/facilitator role. This professional culture is described and explained in terms of the shared values and expectations reported by the study respondents. ^
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.