9 resultados para Set Design

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small errors proved catastrophic. Our purpose to remark that a very small cause which escapes our notice determined a considerable effect that we cannot fail to see, and then we say that the effect is due to chance. Small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. When dealing with any kind of electrical device specification, it is important to note that there exists a pair of test conditions that define a test: the forcing function and the limit. Forcing functions define the external operating constraints placed upon the device tested. The actual test defines how well the device responds to these constraints. Forcing inputs to threshold for example, represents the most difficult testing because this put those inputs as close as possible to the actual switching critical points and guarantees that the device will meet the Input-Output specifications. ^ Prediction becomes impossible by classical analytical analysis bounded by Newton and Euclides. We have found that non linear dynamics characteristics is the natural state of being in all circuits and devices. Opportunities exist for effective error detection in a nonlinear dynamics and chaos environment. ^ Nowadays there are a set of linear limits established around every aspect of a digital or analog circuits out of which devices are consider bad after failing the test. Deterministic chaos circuit is a fact not a possibility as it has been revived by our Ph.D. research. In practice for linear standard informational methodologies, this chaotic data product is usually undesirable and we are educated to be interested in obtaining a more regular stream of output data. ^ This Ph.D. research explored the possibilities of taking the foundation of a very well known simulation and modeling methodology, introducing nonlinear dynamics and chaos precepts, to produce a new error detector instrument able to put together streams of data scattered in space and time. Therefore, mastering deterministic chaos and changing the bad reputation of chaotic data as a potential risk for practical system status determination. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Semantic Binary Data Model (SBM) is a viable alternative to the now-dominant relational data model. SBM would be especially advantageous for applications dealing with complex interrelated networks of objects provided that a robust efficient implementation can be achieved. This dissertation presents an implementation design method for SBM, algorithms, and their analytical and empirical evaluation. Our method allows building a robust and flexible database engine with a wider applicability range and improved performance. ^ Extensions to SBM are introduced and an implementation of these extensions is proposed that allows the database engine to efficiently support applications with a predefined set of queries. A New Record data structure is proposed. Trade-offs of employing Fact, Record and Bitmap Data structures for storing information in a semantic database are analyzed. ^ A clustering ID distribution algorithm and an efficient algorithm for object ID encoding are proposed. Mapping to an XML data model is analyzed and a new XML-based XSDL language facilitating interoperability of the system is defined. Solutions to issues associated with making the database engine multi-platform are presented. An improvement to the atomic update algorithm suitable for certain scenarios of database recovery is proposed. ^ Specific guidelines are devised for implementing a robust and well-performing database engine based on the extended Semantic Data Model. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern software systems are often large and complicated. To better understand, develop, and manage large software systems, researchers have studied software architectures that provide the top level overall structural design of software systems for the last decade. One major research focus on software architectures is formal architecture description languages, but most existing research focuses primarily on the descriptive capability and puts less emphasis on software architecture design methods and formal analysis techniques, which are necessary to develop correct software architecture design. ^ Refinement is a general approach of adding details to a software design. A formal refinement method can further ensure certain design properties. This dissertation proposes refinement methods, including a set of formal refinement patterns and complementary verification techniques, for software architecture design using Software Architecture Model (SAM), which was developed at Florida International University. First, a general guideline for software architecture design in SAM is proposed. Second, specification construction through property-preserving refinement patterns is discussed. The refinement patterns are categorized into connector refinement, component refinement and high-level Petri nets refinement. These three levels of refinement patterns are applicable to overall system interaction, architectural components, and underlying formal language, respectively. Third, verification after modeling as a complementary technique to specification refinement is discussed. Two formal verification tools, the Stanford Temporal Prover (STeP) and the Simple Promela Interpreter (SPIN), are adopted into SAM to develop the initial models. Fourth, formalization and refinement of security issues are studied. A method for security enforcement in SAM is proposed. The Role-Based Access Control model is formalized using predicate transition nets and Z notation. The patterns of enforcing access control and auditing are proposed. Finally, modeling and refining a life insurance system is used to demonstrate how to apply the refinement patterns for software architecture design using SAM and how to integrate the access control model. ^ The results of this dissertation demonstrate that a refinement method is an effective way to develop a high assurance system. The method developed in this dissertation extends existing work on modeling software architectures using SAM and makes SAM a more usable and valuable formal tool for software architecture design. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The span of control is the most discussed single concept in classical and modern management theory. In specifying conditions for organizational effectiveness, the span of control has generally been regarded as a critical factor. Existing research work has focused mainly on qualitative methods to analyze this concept, for example heuristic rules based on experiences and/or intuition. This research takes a quantitative approach to this problem and formulates it as a binary integer model, which is used as a tool to study the organizational design issue. This model considers a range of requirements affecting management and supervision of a given set of jobs in a company. These decision variables include allocation of jobs to workers, considering complexity and compatibility of each job with respect to workers, and the requirement of management for planning, execution, training, and control activities in a hierarchical organization. The objective of the model is minimal operations cost, which is the sum of supervision costs at each level of the hierarchy, and the costs of workers assigned to jobs. The model is intended for application in the make-to-order industries as a design tool. It could also be applied to make-to-stock companies as an evaluation tool, to assess the optimality of their current organizational structure. Extensive experiments were conducted to validate the model, to study its behavior, and to evaluate the impact of changing parameters with practical problems. This research proposes a meta-heuristic approach to solving large-size problems, based on the concept of greedy algorithms and the Meta-RaPS algorithm. The proposed heuristic was evaluated with two measures of performance: solution quality and computational speed. The quality is assessed by comparing the obtained objective function value to the one achieved by the optimal solution. The computational efficiency is assessed by comparing the computer time used by the proposed heuristic to the time taken by a commercial software system. Test results show the proposed heuristic procedure generates good solutions in a time-efficient manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Biologists often need to assess whether unfamiliar datasets warrant the time investment required for more detailed exploration. Basing such assessments on brief descriptions provided by data publishers is unwieldy for large datasets that contain insights dependent on specific scientific questions. Alternatively, using complex software systems for a preliminary analysis may be deemed as too time consuming in itself, especially for unfamiliar data types and formats. This may lead to wasted analysis time and discarding of potentially useful data. Results: We present an exploration of design opportunities that the Google Maps interface offers to biomedical data visualization. In particular, we focus on synergies between visualization techniques and Google Maps that facilitate the development of biological visualizations which have both low-overhead and sufficient expressivity to support the exploration of data at multiple scales. The methods we explore rely on displaying pre-rendered visualizations of biological data in browsers, with sparse yet powerful interactions, by using the Google Maps API. We structure our discussion around five visualizations: a gene co-regulation visualization, a heatmap viewer, a genome browser, a protein interaction network, and a planar visualization of white matter in the brain. Feedback from collaborative work with domain experts suggests that our Google Maps visualizations offer multiple, scale-dependent perspectives and can be particularly helpful for unfamiliar datasets due to their accessibility. We also find that users, particularly those less experienced with computer use, are attracted by the familiarity of the Google Maps API. Our five implementations introduce design elements that can benefit visualization developers. Conclusions: We describe a low-overhead approach that lets biologists access readily analyzed views of unfamiliar scientific datasets. We rely on pre-computed visualizations prepared by data experts, accompanied by sparse and intuitive interactions, and distributed via the familiar Google Maps framework. Our contributions are an evaluation demonstrating the validity and opportunities of this approach, a set of design guidelines benefiting those wanting to create such visualizations, and five concrete example visualizations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FIU's campus master plan should portray an overall concept of the University's vision. Its design should represent a distinctive sense of institutional purpose. Its architecture should support the campus design in the realization of an ideal academic environment. The present master plan of Florida International University (FIU) offers neither a clear typology of architectural elements nor adequate relationships and connections between buildings. FIU needs to enhance its master plan with an architectural and urban vocabulary that creates a better environment. This thesis will examine FIU's present master plan, explaining the history of its development. Further, it will critically examine the quality of the campus, highlighting the success and failure of its various parts. The unrealized potential of the campus' original vision will be juxtaposed to the built reality. In addition, FlU's planning strategies will be parallel with the planning of several master plans of American universities. Finally, this thesis will propose a set of criteria for the inclusion of a new building in the campus master plan. The Center of International Study will be the catalyst that would bring into focus the university's vision. As a means to prove the validity of these criteria, a new location for the center of international studies will be selected, and a schematic architectural proposal will be made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores how architecture can adapt local vernacular design principles to contemporary building design in a rural setting. Vernacular buildings in Guyana present a unique and coherent set of design principles developed in response to climatic and cultural conditions. The concept of “habitus” proposed by philosopher Pierre Bourdieu describing the evolving nature of social culture was used to interpret Guyanese local buildings. These principles were then applied to the design of a Women’s Center in the village of Port Mourant on the east coast of Guyana. The design specifically interpreted the “bottom-house” of local Guyanese architecture, an inherently flexible transitional outdoor space beneath raised buildings. The design of the Women’s Center demonstrates how contemporary architectural design can respond to climatic requirements, local preferences and societal needs to support the local culture.