10 resultados para Semantic Text Analysis
em Digital Commons at Florida International University
Resumo:
In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. ^ Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. ^ In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data. ^
Resumo:
In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data.
Resumo:
This paper reflects a research project on the influence of online news media (from print, radio, and televised outlets) on disaster response. Coverage on the October 2010 Indonesian tsunami and earthquake was gathered from 17 sources from October 26 through November 30. This data was analyzed quantitatively with respect to coverage intensity over time and among outlets. Qualitative analyses were also conducted using keywords and value scale that assessed the degree of positivity or negativity associated with that keyword in the context of accountability. Results yielded insights into the influence of online media on actors' assumption of accountability and quality of response. It also provided information as to the optimal time window in which advocates and disaster management specialists can best present recommendations to improve policy and raise awareness. Coverage of outlets was analyzed individually, in groups, and as a whole, in order to discern behavior patterns for a better understanding of media interdependency. This project produced analytical insights but is primarily intended as a prototype for more refined and extensive research.
Resumo:
The primary focus of this dissertation is to determine the degree to which political, economic, and socio-cultural elites in Jamaica and Trinidad & Tobago influenced the development of the Caribbean Court of Justice's (CCJ) original jurisdiction. As members of the Caribbean Community (CARICOM), both states replaced their protectionist model with open regionalism at the end of the 1980s. Open regionalism was adopted to make CARICOM member states internationally competitive. Open regionalism was also expected to create a stable regional trade environment. To ensure a stable economic environment, a regional court with original jurisdiction was proposed. A six member Preparatory Committee on the Caribbean Court of Justice (PREPCOM), on which Jamaica and Trinidad & Tobago sat, was formed to draft the Agreement Establishing the Caribbean Court of Justice that would govern how the Court would interpret the Revised Treaty of Chaguaramas (RTC) and enforce judgments. ^ Through the use of qualitative research methods, namely elite interviews, document data, and text analysis, and a focus on three levels of analysis, that is, the international, regional, and domestic, three major conclusions are drawn. First, changes in the international economic environment caused Jamaica and Trinidad & Tobago to support the establishment of a regional court. Second, Jamaica had far greater influence on the final structure of the CCJ than Trinidad & Tobago. Third, it was found that in both states the political elite had the greatest influence on the development and structure of the CCJ. The economic elite followed by the socio-cultural elite were found to have a lesser impact. These findings are significant because they account for the impact of elites and elite behavior on institutions in a much-neglected category of states: the developing world.^
Resumo:
This research examines how assasa-passisa and its surrounding concepts are discussed in Buddhaghossa's 5th century Theravada work, the Visuddhimagga (The Path of Purification) to determine if there is metaphysical use of the term in the text and to determine if the concept of assasa-passasa is similar to the better-known Indian concept of prana (metaphysical vital animating force), indicating whether Theravada Buddhism more closely resembles other Indian religions in terms of metaphysical content. Text analysis reveals how assasa-passasa is described in the Visuddhimagga as an animating vital force, suggesting that Theravada Buddhism has an implicit ontology similar to other Indian schools of philosophy. Secondarily, this paper argues that because assisa-passasa plays a similar role to prana in the Visuddhimagga, it is also operationally similar and could be functioning as the implicit intermediary between links in the chain of dependent co-arising-as the vehicle of paticcasamuppada.
Resumo:
Sociolinguists have documented the substrate influence of various languages on the formation of dialects in numerous ethnic-regional setting throughout the United States. This literature shows that while phonological and grammatical influences from other languages may be instantiated as durable dialect features, lexical phenomena often fade over time as ethnolinguistic communities assimilate with contiguous dialect groups. In preliminary investigations of emerging Miami Latino English, we have observed that lexical forms based on Spanish lexical forms are not only ubiquitous among the speech of the first generation Cuban Americans but also of the second. Examples, observed in field work, casual observation, and studied formally in an experimental context include the following: “get down from the car,” which derives from the Spanish equivalent, bajar del carro instead of “get out of the car”. The translation task administered to thirty-one participants showed a variety lexical phenomena are still maintained at equal or higher frequencies.
Resumo:
An implementation of Sem-ODB—a database management system based on the Semantic Binary Model is presented. A metaschema of Sem-ODB database as well as the top-level architecture of the database engine is defined. A new benchmarking technique is proposed which allows databases built on different database models to compete fairly. This technique is applied to show that Sem-ODB has excellent efficiency comparing to a relational database on a certain class of database applications. A new semantic benchmark is designed which allows evaluation of the performance of the features characteristic of semantic database applications. An application used in the benchmark represents a class of problems requiring databases with sparse data, complex inheritances and many-to-many relations. Such databases can be naturally accommodated by semantic model. A fixed predefined implementation is not enforced allowing the database designer to choose the most efficient structures available in the DBMS tested. The results of the benchmark are analyzed. ^ A new high-level querying model for semantic databases is defined. It is proven adequate to serve as an efficient native semantic database interface, and has several advantages over the existing interfaces. It is optimizable and parallelizable, supports the definition of semantic userviews and the interoperability of semantic databases with other data sources such as World Wide Web, relational, and object-oriented databases. The query is structured as a semantic database schema graph with interlinking conditionals. The query result is a mini-database, accessible in the same way as the original database. The paradigm supports and utilizes the rich semantics and inherent ergonomics of semantic databases. ^ The analysis and high-level design of a system that exploits the superiority of the Semantic Database Model to other data models in expressive power and ease of use to allow uniform access to heterogeneous data sources such as semantic databases, relational databases, web sites, ASCII files, and others via a common query interface is presented. The Sem-ODB engine is used to control all the data sources combined under a unified semantic schema. A particular application of the system to provide an ODBC interface to the WWW as a data source is discussed. ^
Resumo:
To carry out their specific roles in the cell, genes and gene products often work together in groups, forming many relationships among themselves and with other molecules. Such relationships include physical protein-protein interaction relationships, regulatory relationships, metabolic relationships, genetic relationships, and much more. With advances in science and technology, some high throughput technologies have been developed to simultaneously detect tens of thousands of pairwise protein-protein interactions and protein-DNA interactions. However, the data generated by high throughput methods are prone to noise. Furthermore, the technology itself has its limitations, and cannot detect all kinds of relationships between genes and their products. Thus there is a pressing need to investigate all kinds of relationships and their roles in a living system using bioinformatic approaches, and is a central challenge in Computational Biology and Systems Biology. This dissertation focuses on exploring relationships between genes and gene products using bioinformatic approaches. Specifically, we consider problems related to regulatory relationships, protein-protein interactions, and semantic relationships between genes. A regulatory element is an important pattern or "signal", often located in the promoter of a gene, which is used in the process of turning a gene "on" or "off". Predicting regulatory elements is a key step in exploring the regulatory relationships between genes and gene products. In this dissertation, we consider the problem of improving the prediction of regulatory elements by using comparative genomics data. With regard to protein-protein interactions, we have developed bioinformatics techniques to estimate support for the data on these interactions. While protein-protein interactions and regulatory relationships can be detected by high throughput biological techniques, there is another type of relationship called semantic relationship that cannot be detected by a single technique, but can be inferred using multiple sources of biological data. The contributions of this thesis involved the development and application of a set of bioinformatic approaches that address the challenges mentioned above. These included (i) an EM-based algorithm that improves the prediction of regulatory elements using comparative genomics data, (ii) an approach for estimating the support of protein-protein interaction data, with application to functional annotation of genes, (iii) a novel method for inferring functional network of genes, and (iv) techniques for clustering genes using multi-source data.
Resumo:
This thesis research describes the design and implementation of a Semantic Geographic Information System (GIS) and the creation of its spatial database. The database schema is designed and created, and all textual and spatial data are loaded into the database with the help of the Semantic DBMS's Binary Database Interface currently being developed at the FIU's High Performance Database Research Center (HPDRC). A friendly graphical user interface is created together with the other main system's areas: displaying process, data animation, and data retrieval. All these components are tightly integrated to form a novel and practical semantic GIS that has facilitated the interpretation, manipulation, analysis, and display of spatial data like: Ocean Temperature, Ozone(TOMS), and simulated SeaWiFS data. At the same time, this system has played a major role in the testing process of the HPDRC's high performance and efficient parallel Semantic DBMS.
Resumo:
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.