42 resultados para Semantic Annotation

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research was to examine from a syntactic and narrative structure perspective two narrative summary types: a summary with a length constraint and an unconstrained summary. In addition, this research served to develop a multidimensional theory of narrative comprehension.^ College freshmen read two short stories written by written by Sake and were asked to write a constrained summary for one text and an unconstrained summary for the other text. Following this the subjects completed a metacognitive questionnaire. The summaries were analyzed to examine transitivity features and narrative structure features. The metacognitive questionnaires were examined to extract information about plot structure, differences between one and two episode stories, and to gain insight into the strategies used by subjects in producing both summary types.^ A Paired t-test conducted on the data found that there was a significant transitivity feature mean difference between a constrained summary and an unconstrained summary indicating that the number of transitivity features produced from each summary type were task dependent.^ Chi-square tests conducted on the data found that there were proportional differences in usage between plot features and thematic abstract units in an unconstrained summary and a constrained summary indicating that plot features and thematic abstract units produced from each summary type were task dependent.^ Qualitative analyses indicated that setting, goal, and resolution are typical within plot organization, there are summary production differences between one and two episode narratives, and subjects do not seem to be aware of summary production strategies.^ The results of this research have implications for comprehension and writing instruction. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An implementation of Sem-ODB—a database management system based on the Semantic Binary Model is presented. A metaschema of Sem-ODB database as well as the top-level architecture of the database engine is defined. A new benchmarking technique is proposed which allows databases built on different database models to compete fairly. This technique is applied to show that Sem-ODB has excellent efficiency comparing to a relational database on a certain class of database applications. A new semantic benchmark is designed which allows evaluation of the performance of the features characteristic of semantic database applications. An application used in the benchmark represents a class of problems requiring databases with sparse data, complex inheritances and many-to-many relations. Such databases can be naturally accommodated by semantic model. A fixed predefined implementation is not enforced allowing the database designer to choose the most efficient structures available in the DBMS tested. The results of the benchmark are analyzed. ^ A new high-level querying model for semantic databases is defined. It is proven adequate to serve as an efficient native semantic database interface, and has several advantages over the existing interfaces. It is optimizable and parallelizable, supports the definition of semantic userviews and the interoperability of semantic databases with other data sources such as World Wide Web, relational, and object-oriented databases. The query is structured as a semantic database schema graph with interlinking conditionals. The query result is a mini-database, accessible in the same way as the original database. The paradigm supports and utilizes the rich semantics and inherent ergonomics of semantic databases. ^ The analysis and high-level design of a system that exploits the superiority of the Semantic Database Model to other data models in expressive power and ease of use to allow uniform access to heterogeneous data sources such as semantic databases, relational databases, web sites, ASCII files, and others via a common query interface is presented. The Sem-ODB engine is used to control all the data sources combined under a unified semantic schema. A particular application of the system to provide an ODBC interface to the WWW as a data source is discussed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Query processing is a commonly performed procedure and a vital and integral part of information processing. It is therefore important and necessary for information processing applications to continuously improve the accessibility of data sources as well as the ability to perform queries on those data sources. ^ It is well known that the relational database model and the Structured Query Language (SQL) are currently the most popular tools to implement and query databases. However, a certain level of expertise is needed to use SQL and to access relational databases. This study presents a semantic modeling approach that enables the average user to access and query existing relational databases without the concern of the database's structure or technicalities. This method includes an algorithm to represent relational database schemas in a more semantically rich way. The result of which is a semantic view of the relational database. The user performs queries using an adapted version of SQL, namely Semantic SQL. This method substantially reduces the size and complexity of queries. Additionally, it shortens the database application development cycle and improves maintenance and reliability by reducing the size of application programs. Furthermore, a Semantic Wrapper tool illustrating the semantic wrapping method is presented. ^ I further extend the use of this semantic wrapping method to heterogeneous database management. Relational, object-oriented databases and the Internet data sources are considered to be part of the heterogeneous database environment. Semantic schemas resulting from the algorithm presented in the method were employed to describe the structure of these data sources in a uniform way. Semantic SQL was utilized to query various data sources. As a result, this method provides users with the ability to access and perform queries on heterogeneous database systems in a more innate way. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research presented in this dissertation is comprised of several parts which jointly attain the goal of Semantic Distributed Database Management with Applications to Internet Dissemination of Environmental Data. ^ Part of the research into more effective and efficient data management has been pursued through enhancements to the Semantic Binary Object-Oriented database (Sem-ODB) such as more effective load balancing techniques for the database engine, and the use of Sem-ODB as a tool for integrating structured and unstructured heterogeneous data sources. Another part of the research in data management has pursued methods for optimizing queries in distributed databases through the intelligent use of network bandwidth; this has applications in networks that provide varying levels of Quality of Service or throughput. ^ The application of the Semantic Binary database model as a tool for relational database modeling has also been pursued. This has resulted in database applications that are used by researchers at the Everglades National Park to store environmental data and to remotely-sensed imagery. ^ The areas of research described above have contributed to the creation TerraFly, which provides for the dissemination of geospatial data via the Internet. TerraFly research presented herein ranges from the development of TerraFly's back-end database and interfaces, through the features that are presented to the public (such as the ability to provide autopilot scripts and on-demand data about a point), to applications of TerraFly in the areas of hazard mitigation, recreation, and aviation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Semantic Binary Data Model (SBM) is a viable alternative to the now-dominant relational data model. SBM would be especially advantageous for applications dealing with complex interrelated networks of objects provided that a robust efficient implementation can be achieved. This dissertation presents an implementation design method for SBM, algorithms, and their analytical and empirical evaluation. Our method allows building a robust and flexible database engine with a wider applicability range and improved performance. ^ Extensions to SBM are introduced and an implementation of these extensions is proposed that allows the database engine to efficiently support applications with a predefined set of queries. A New Record data structure is proposed. Trade-offs of employing Fact, Record and Bitmap Data structures for storing information in a semantic database are analyzed. ^ A clustering ID distribution algorithm and an efficient algorithm for object ID encoding are proposed. Mapping to an XML data model is analyzed and a new XML-based XSDL language facilitating interoperability of the system is defined. Solutions to issues associated with making the database engine multi-platform are presented. An improvement to the atomic update algorithm suitable for certain scenarios of database recovery is proposed. ^ Specific guidelines are devised for implementing a robust and well-performing database engine based on the extended Semantic Data Model. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To carry out their specific roles in the cell, genes and gene products often work together in groups, forming many relationships among themselves and with other molecules. Such relationships include physical protein-protein interaction relationships, regulatory relationships, metabolic relationships, genetic relationships, and much more. With advances in science and technology, some high throughput technologies have been developed to simultaneously detect tens of thousands of pairwise protein-protein interactions and protein-DNA interactions. However, the data generated by high throughput methods are prone to noise. Furthermore, the technology itself has its limitations, and cannot detect all kinds of relationships between genes and their products. Thus there is a pressing need to investigate all kinds of relationships and their roles in a living system using bioinformatic approaches, and is a central challenge in Computational Biology and Systems Biology. This dissertation focuses on exploring relationships between genes and gene products using bioinformatic approaches. Specifically, we consider problems related to regulatory relationships, protein-protein interactions, and semantic relationships between genes. A regulatory element is an important pattern or "signal", often located in the promoter of a gene, which is used in the process of turning a gene "on" or "off". Predicting regulatory elements is a key step in exploring the regulatory relationships between genes and gene products. In this dissertation, we consider the problem of improving the prediction of regulatory elements by using comparative genomics data. With regard to protein-protein interactions, we have developed bioinformatics techniques to estimate support for the data on these interactions. While protein-protein interactions and regulatory relationships can be detected by high throughput biological techniques, there is another type of relationship called semantic relationship that cannot be detected by a single technique, but can be inferred using multiple sources of biological data. The contributions of this thesis involved the development and application of a set of bioinformatic approaches that address the challenges mentioned above. These included (i) an EM-based algorithm that improves the prediction of regulatory elements using comparative genomics data, (ii) an approach for estimating the support of protein-protein interaction data, with application to functional annotation of genes, (iii) a novel method for inferring functional network of genes, and (iv) techniques for clustering genes using multi-source data.