4 resultados para Scale-up
em Digital Commons at Florida International University
Resumo:
Climate warming is predicted to cause an increase in the growing season by as much as 30% for regions of the arctic tundra. This will have a significant effect on the physiological activity of the vascular plant species and the ecosystem as a whole. The need to understand the possible physiological change within this ecosystem is confounded by the fact that research in this extreme environment has been limited to periods when conditions are most favorable, mid June–mid August. This study attempted to develop the most comprehensive understanding to date of the physiological activity of seven tundra plant species in the Alaskan Arctic under natural and lengthened growing season conditions. Four interrelated lines of research, scaling from cellular signals to ecosystem processes, set the foundation for this study. ^ I established an experiment looking at the physiological response of arctic sedges to soil temperature stress with emphasis on the role of the hormone abscisic acid (ABA). A manipulation was also developed where the growing season was lengthened and soils were warmed in an attempt to determine the maximum physiological capacity of these seven vascular species. Additionally, the physiological capacities of four evergreens were tested in the subnivean environment along with the potential role anthocyanins play in their activity. The measurements were scaled up to determine the physiological role of these evergreens in maintaining ecosystem carbon fluxes. ^ These studies determined that soil temperature differentials significantly affect vascular plant physiology. ABA appears to be a physiological modifier that limits stomatal processes when root temperatures are low. Photosynthetic capacity was limited by internal plant physiological mechanisms in the face of a lengthened growing season. Therefore shifts in ecosystem carbon dynamics are driven by changes in species composition and biomass production on a per/unit area basis. These studies also found that changes in soil temperatures will have a greater effect of physiological processes than would the same magnitude of change in air temperature. The subnivean environment exhibits conditions that are favorable for photosynthetic activity in evergreen species. These measurements when scaled to the ecosystem have a significant role in limiting the system's carbon source capacity. ^
Resumo:
As massive data sets become increasingly available, people are facing the problem of how to effectively process and understand these data. Traditional sequential computing models are giving way to parallel and distributed computing models, such as MapReduce, both due to the large size of the data sets and their high dimensionality. This dissertation, as in the same direction of other researches that are based on MapReduce, tries to develop effective techniques and applications using MapReduce that can help people solve large-scale problems. Three different problems are tackled in the dissertation. The first one deals with processing terabytes of raster data in a spatial data management system. Aerial imagery files are broken into tiles to enable data parallel computation. The second and third problems deal with dimension reduction techniques that can be used to handle data sets of high dimensionality. Three variants of the nonnegative matrix factorization technique are scaled up to factorize matrices of dimensions in the order of millions in MapReduce based on different matrix multiplication implementations. Two algorithms, which compute CANDECOMP/PARAFAC and Tucker tensor decompositions respectively, are parallelized in MapReduce based on carefully partitioning the data and arranging the computation to maximize data locality and parallelism.
Resumo:
It may soon be the norm for many airline passengers arriving at the check-in desk of any international airline with both stow- away and carry-on luggage to be asked to step onto the weighing scale as the airlines attempt to compete and remain operationally viable in what has become for most a cut-throat and highly litigious operating environment. The author's commentary seeks to highlight a number of the issues surrounding the current impasse. It is also intended to catalyze a more healthy and informed debate aimed at finding an acceptable resolution to this crisis prior to one being imposed which fails to satisfy the needs of either camp.
Resumo:
Simarouba glauca, a non-edible oilseed crop native to South Florida, is gaining popularity as a feedstock for the production of biodiesel. The University of Agriculture Sciences in Bangalore, India has developed a biodiesel production model based on the principles of decentralization, small scales, and multiple fuel sources. Success of such a program depends on conversion efficiencies at multiple stages. The conversion efficiency of the field-level, decentralized production model was compared with the in-laboratory conversion efficiency benchmark. The study indicated that the field-level model conversion efficiency was less than that of the lab-scale set up. The fuel qualities and characteristics of the Simarouba glauca biodiesel were tested and found to be the standards required for fuel designation. However, this research suggests that for Simarouba glauca to be widely accepted as a biodiesel feedstock further investigation is still required.