8 resultados para Sado’s river landscape
em Digital Commons at Florida International University
Resumo:
Wetlands respond to nutrient enrichment with characteristic increases in soil nutrients and shifts in plant community composition. These responses to eutrophication tend to be more rapid and longer lasting in oligotrophic systems. In this study, we documented changes associated with water quality from 1989 to 1999 in oligotrophic Everglades wetlands. We accomplished this by resampling soils and macrophytes along four transects in 1999 that were originally sampled in 1989. In addition to documenting soil phosphorus (P) levels and decadal changes in plant species composition at the same sites, we report macrophyte tissue nutrient and biomass data from 1999 for future temporal comparisons. Water quality improved throughout much of the Everglades in the 1990s. In spite of this improvement, though, we found that water quality impacts worsened during this time in areas of the northern Everglades (western Loxahatchee National Wildlife Refuge [NWR] and Water Conservation Area [WCA] 2A). Zones of high soil P (exceeding 700 mg P kg−1 dry wt. soil) increased to more than 1 km from the western margin canal into the Loxahatchee NWR and more than 4 km from northern boundary canal into WCA-2A. This doubling of the high soil P zones since 1989 was paralleled with an expansion of cattail (Typha spp.)-dominated marsh in both regions. Macrophyte species richness declined in both areas from 1989 to 1999 (27% in the Loxahatchee NWR and 33% in WCA-2A). In contrast, areas well south of the Everglades Agricultural Area, including WCA-3A and Everglades National Park (ENP), did not decline during this time. We found no significant decadal change in plant community patterns from 1989 and 1999 along transects in southern WCA-3A or Shark River Slough (ENP). Our 1999 sampling also included a new transect in Taylor Slough (ENP), which will allow change analysis here in the future. Regular sampling of these transects, to verify decadal-scale environmental impacts or improvements, will continue to be an important tool for long-term management and restoration of the Everglades.
Resumo:
This case study examines the factors that shaped the identity and landscape of a small island-urban-village between the north and south forks of the Middle River and north of an urban area in Broward County, Florida. The purpose of the study is to understand how Wilton Manors was transformed from a “whites only” enclave to the contemporary upscale, diverse, and third gayest city in the U.S. by positing that a dichotomy for urban places exists between their exchange value as seen by Logan and Molotch and the use value produced through everyday activity according to Lefebvre. Qualitative methods were used to gather evidence for reaching conclusions about the relationship among the worldview of residents, the tension between exchange value and use value in the restructuration of the city, and the transformation of Wilton Manors at the end of the 1990s. Semi-structured, in-depth interviews were conducted with 21 contemporary participants. In addition, thirteen taped CDs of selected members of founding families, previously taped in the 1970s, were analyzed using a grounded theory approach. My findings indicate that Wilton Manors’ residents share a common worldview which incorporates social inclusion as a use value, and individual agency in the community. This shared worldview can be traced to selected city pioneers whose civic mindedness helped shape city identity and laid the foundation for future restructuration. Currently, residents’ quality of life reflected in the city’s use value is more significant than exchange value as a primary force in the decisions that are made about the city’s development. With innovative ideas, buildings emulating the new urban mixed-use design, and a reputation as the third gayest city in the United States, Wilton Manors reflects a worldview where residents protect use value as primary over market value in the decisions they make that shape their city but not without contestation.^
Resumo:
Estuaries and estuarine wetlands are ecologically and societally important systems, exhibiting high rates of primary production that fuel offshore secondary production. Hydrological processes play a central role in shaping estuarine ecosystem structure and function by controlling nutrient loading and the relative contributions of marine and terrestrial influences on the estuary. The Comprehensive Everglades Restoration Plan includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The existing seasonal and inter-annual variability of water flow and source in Taylor River affords the opportunity to investigate relationships between ecosystem function and hydrologic forcing. Estimates of aquatic ecosystem metabolism, derived from free-water, diel changes in dissolved oxygen, were combined with assessments of wetland flocculent detritus quality and transport within the context of seasonal changes in Everglades hydrology. Variation in ecosystem gross primary production and respiration were linked to seasonal changes in estuarine water quality using multiple autoregression models. Furthermore, Taylor River was observed to be net heterotrophic, indicating that an allochthonous source of carbon maintained ecosystem respiration in excess of autochthonous primary production. Wetland-derived detritus appears to be an important vector of energy and nutrients across the Everglades landscape; and in Taylor River, is seasonally flushed into ponded segments of the river where it is then respired. Lastly, seasonal water delivery appears to govern feedbacks regulating water column phosphorus availability in the Taylor River estuary.
Resumo:
Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.
Does landscape context affect habitat value? The importance of seascape ecology in back-reef systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.
Resumo:
Increasing dependence on groundwater in the Wakal River basin, India, jeopardizes water supply sustainability. A numerical groundwater model was developed to better understand the aquifer system and to evaluate its potential in terms of quantity and replenishment. Potential artificial recharge areas were delineated using landscape and hydrogeologic parameters, Geographic Information System (GIS), and remote sensing. Groundwater models are powerful tools for recharge estimation when transmissivity is known. Proper recharge must be applied to reproduce field-measured heads. The model showed that groundwater levels could decline significantly if there are two drought years in every four years that result in reduced recharge, and groundwater withdrawal is increased by 15%. The effect of such drought is currently uncertain however, because runoff from the basin is unknown. Remote sensing and GIS revealed areas with slopes less than 5%, forest cover, and Normalized Difference Vegetative Index greater than 0.5 that are suitable recharge sites.
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Does Landscape Context Affect Habitat Value? The Importance of Seascape Ecology in Back-reef Systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.