5 resultados para SUPPLY CHAINS
em Digital Commons at Florida International University
Resumo:
This dissertation delivers a framework to diagnose the Bull-Whip Effect (BWE) in supply chains and then identify methods to minimize it. Such a framework is needed because in spite of the significant amount of literature discussing the bull-whip effect, many companies continue to experience the wide variations in demand that are indicative of the bull-whip effect. While the theory and knowledge of the bull-whip effect is well established, there still is the lack of an engineering framework and method to systematically identify the problem, diagnose its causes, and identify remedies. ^ The present work seeks to fill this gap by providing a holistic, systems perspective to bull-whip identification and diagnosis. The framework employs the SCOR reference model to examine the supply chain processes with a baseline measure of demand amplification. Then, research of the supply chain structural and behavioral features is conducted by means of the system dynamics modeling method. ^ The contribution of the diagnostic framework, is called Demand Amplification Protocol (DAMP), relies not only on the improvement of existent methods but also contributes with original developments introduced to accomplish successful diagnosis. DAMP contributes a comprehensive methodology that captures the dynamic complexities of supply chain processes. The method also contributes a BWE measurement method that is suitable for actual supply chains because of its low data requirements, and introduces a BWE scorecard for relating established causes to a central BWE metric. In addition, the dissertation makes a methodological contribution to the analysis of system dynamic models with a technique for statistical screening called SS-Opt, which determines the inputs with the greatest impact on the bull-whip effect by means of perturbation analysis and subsequent multivariate optimization. The dissertation describes the implementation of the DAMP framework in an actual case study that exposes the approach, analysis, results and conclusions. The case study suggests a balanced solution between costs and demand amplification can better serve both firms and supply chain interests. Insights pinpoint to supplier network redesign, postponement in manufacturing operations and collaborative forecasting agreements with main distributors.^
Resumo:
In the latest phase of globalization, transnational corporations based in the U.S. have worked closely with U.S. foreign policymakers to secure favorable foreign direct investment provisions within U.S. domestic legislation and within U.S. trade agreements. These interactions between transnational firms and the U.S. state have provided many of the preconditions for an expansion of foreign direct investment connected to capital liberalization and the growth of global supply chains from the 1980s to the present. This relationship is best conceptualized as representing a “transnational interest bloc,” whose policy objectives are incorporated within investment provisions in US-backed trade and investment agreements.
Resumo:
Enterprise Resource Planning (ERP) systems are software programs designed to integrate the functional requirements, and operational information needs of a business. Pressures of competition and entry standards for participation in major manufacturing supply chains are creating greater demand for small business ERP systems. The proliferation of new offerings of ERP systems introduces complexity to the selection process to identify the right ERP business software for a small and medium-sized enterprise (SME). The selection of an ERP system is a process in which a faulty conclusion poses a significant risk of failure to SME’s. The literature reveals that there are still very high failure rates in ERP implementation, and that faulty selection processes contribute to this failure rate. However, the literature is devoid of a systematic methodology for the selection process for an ERP system by SME’s. This study provides a methodological approach to selecting the right ERP system for a small or medium-sized enterprise. The study employs Thomann’s meta-methodology for methodology development; a survey of SME’s is conducted to inform the development of the methodology, and a case study is employed to test, and revise the new methodology. The study shows that a rigorously developed, effective methodology that includes benchmarking experiences has been developed and successfully employed. It is verified that the methodology may be applied to the domain of users it was developed to serve, and that the test results are validated by expert users and stakeholders. Future research should investigate in greater detail the application of meta-methodologies to supplier selection and evaluation processes for services and software; additional research into the purchasing practices of small firms is clearly needed.^
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.