4 resultados para SPARK

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypersonic aerospace vehicles are severely limited by the lack of adequate high temperature materials that can withstand the harsh hypersonic environment. Tantalum carbide (TaC), with a melting point of 3880°C, is an ultrahigh temperature ceramic (UHTC) with potential applications such as scramjet engines, leading edges, and zero erosion nozzles. However, consolidation of TaC to a dense structure and its low fracture toughness are major challenges that make it currently unviable for hypersonic applications. In this study, Graphene NanoPlatelets (GNP) reinforced TaC composites are synthesized by spark plasma sintering (SPS) at extreme conditions of 1850˚C and 80-100 MPa. The addition of GNP improves densification and enhances fracture toughness of TaC by up to ~100% through mechanisms such as GNP bending, sliding, pull-out, grain wrapping, crack bridging, and crack deflection. Also, TaC-GNP composites display improved oxidation behavior over TaC when exposed to a high temperature plasma flow exceeding 2500 ˚C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydroxyapatite (HA) has received wide attention in orthopedics, due to its biocompatibility and osseointegration ability. Despite these advantages, the brittle nature and low fracture toughness of HA often results in rapid wear and premature fracture of implant. Hence, there is a need to improve the fracture toughness and wear resistance of HA without compromising its biocompatibility. ^ The aim of the current research is to explore the potential of nanotubes as reinforcement to HA for orthopedic implants. HA- 4 wt.% carbon nanotube (CNT) composites and coatings are synthesized by spark plasma sintering and plasma spraying respectively, and investigated for their mechanical, tribological and biological behavior. CNT reinforcement improves the fracture toughness (>90%) and wear resistance (>66%) of HA for coating and free standing composites. CNTs have demonstrated a positive influence on the proliferation, differentiation and matrix mineralization activities of osteoblasts, during in-vitro biocompatibility studies. In-vivo exposure of HA-CNT coated titanium implant in animal model (rat) shows excellent histocompatibility and neobone integration on the implant surface. The improved osseointegration due to presence of CNTs in HA is quantified by the adhesion strength measurement of single osteoblast using nano-scratch technique. ^ Considering the ongoing debate about cytotoxicity of CNTs in the literature, the present study also suggests boron nitride nanotube (BNNT) as an alternative reinforcement. BNNT with the similar elastic modulus and strength as CNT, were added to HA. The resulting composite having 4 wt.% BNNTs improved the fracture toughness (∼85%) and wear resistance (∼75%) of HA in the similar range as HA-CNT composites. BNNTs were found to be non-cytotoxic for osteoblasts and macrophages. In-vitro evaluation shows positive role of BNNT in osteoblast proliferation and viability. Apatite formability of BNNT surface in ∼4 days establishes its osseointegration ability.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The arrival of Cuba’s Information Technology (IT) and Communications Minister Ramiro Valdés to Venezuela in the Spring of 2010 to serve as a ‘consultant’ to the Venezuelan government awakened a new reality in that country. Rampant with deep economic troubles, escalating crime, a murder rate that has doubled since Chávez took over in 1999, and an opposition movement led by university students and other activists who use the Internet as their primary weapon, Venezuela has resorted to Cuba for help. In a country where in large part traditional media outlets have been censored or are government-controlled, the Internet and its online social networks have become the place to obtain, as well as disseminate, unfiltered information. As such, Internet growth and use of its social networks has skyrocketed in Venezuela, making it one of Latin America’s highest Web users. Because of its increased use to spark political debate among Venezuelans and publish information that differs with the official government line, Chávez has embarked on an initiative to bring the Internet to the poor and others who would otherwise not have access, by establishing government-sponsored Internet Info Centers throughout the country, to disseminate information to his followers. With the help of Cuban advisors, who for years have been a part of Venezuela’s defense, education, and health care initiatives, Chávez has apparently taken to adapting Cuba’s methodology for the control of information. He has begun to take special steps toward also controlling the type of information flowing through the country’s online social networks, considering the implementation of a government-controlled single Internet access point in Venezuela. Simultaneously, in adapting to Venezuela’s Internet reality, Chávez has engaged online by creating his own Twitter account in an attempt to influence public opinion, primarily of those who browse the Web. With a rapidly growing following that may soon reach one million subscribers, Chávez claims to have set up his own online trench to wage cyber space battle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this thesis was to compare graphene nanoplatelets (GNP) and WS2 as solid lubricant additives to aluminum in order to reduce friction and wear. The central hypothesis of this work relied on lubricating properties of 2D materials, which consist layers that slip under a shear force. Two aluminum composites were made (Al-2 vol.% GNP and Al-2 vol.% WS2) by spark plasma sintering. Tribological properties were evaluated by ball-on-disk wear tests at room temperature (RT) and 200°C. WS2 not only presented the lowest COF (0.66) but also improved the wear resistance of aluminum by 54% at RT. Al-2 vol.% GNP composite displayed poor densification (91%) and low hardness resulting in poor wear resistance. The wear rate of Al-2 vol.% GNP composite increased by 233% at RT and 48% at 200°C as compared to pure aluminum. GNP addition also resulted in lower COF (0.79) as compared to pure aluminum (0.87).