5 resultados para SCA
em Digital Commons at Florida International University
Resumo:
Stomach contents analysis (SCA) provides a snap-shot observation of a consumer's diet. Interpretation of SCA data can be complicated by many factors, including variation in gastric residence times and digestion rates among prey taxa. Although some SCA methods are reported to efficiently remove all stomach contents, the effectiveness of these techniques has rarely been tested for large irregular shaped prey with hard exoskeletons. We used a controlled feeding trial to estimate gastric residency time and decomposition rate of a large crustacean prey item, the Blue Crab (Callinectes sapidus), which is consumed by American Alligators (Alligator mississippiensis), an abundant apex predator in coastal habitats of the southeastern United States. The decomposition rate of C. sapidus in the stomachs of A. mississippiensis followed a predictable pattern, and some crab pieces remained in stomachs for at least 14 days. We also found that certain portions of C. sapidus were prone to becoming caught within the stomach or esophagus, meaning not all crab parts are consistently recovered using gastric lavage techniques. However, because the state of decomposition of crabs was predictable, it is possible to estimate time since consumption for crabs recovered from wild alligators. This information, coupled with a detailed understanding of crab distributions and alligator movement tactics could help elucidate patterns of cross-ecosystem foraging by the American Alligator in coastal habitats.
Resumo:
Rates of survival of victims of sudden cardiac arrest (SCA) using cardio pulmonary resuscitation (CPR) have shown little improvement over the past three decades. Since registered nurses (RNs) comprise the largest group of healthcare providers in U.S. hospitals, it is essential that they are competent in performing the four primary measures (compression, ventilation, medication administration, and defibrillation) of CPR in order to improve survival rates of SCA patients. The purpose of this experimental study was to test a color-coded SMOCK system on: 1) time to implement emergency patient care measures 2) technical skills performance 3) number of medical errors, and 4) team performance during simulated CPR exercises. The study sample was 260 RNs (M 40 years, SD=11.6) with work experience as an RN (M 7.25 years, SD=9.42).Nurses were allocated to a control or intervention arm consisting of 20 groups of 5-8 RNs per arm for a total of 130 RNs in each arm. Nurses in each study arm were given clinical scenarios requiring emergency CPR. Nurses in the intervention group wore different color labeled aprons (smocks) indicating their role assignment (medications, ventilation, compression, defibrillation, etc) on the code team during CPR. Findings indicated that the intervention using color-labeled smocks for pre-assigned roles had a significant effect on the time nurses started compressions (t=3.03, p=0.005), ventilations (t=2.86, p=0.004) and defibrillations (t=2.00, p=.05) when compared to the controls using the standard of care. In performing technical skills, nurses in the intervention groups performed compressions and ventilations significantly better than those in the control groups. The control groups made significantly (t=-2.61, p=0.013) more total errors (7.55 SD 1.54) than the intervention group (5.60, SD 1.90). There were no significant differences in team performance measures between the groups. Study findings indicate use of colored labeled smocks during CPR emergencies resulted in: shorter times to start emergency CPR; reduced errors; more technical skills completed successfully; and no differences in team performance.
Resumo:
The ability to use Software Defined Radio (SDR) in the civilian mobile applications will make it possible for the next generation of mobile devices to handle multi-standard personal wireless devices and ubiquitous wireless devices. The original military standard created many beneficial characteristics for SDR, but resulted in a number of disadvantages as well. Many challenges in commercializing SDR are still the subject of interest in the software radio research community. Four main issues that have been already addressed are performance, size, weight, and power. ^ This investigation presents an in-depth study of SDR inter-components communications in terms of total link delay related to the number of components and packet sizes in systems based on Software Communication Architecture (SCA). The study is based on the investigation of the controlled environment platform. Results suggest that the total link delay does not linearly increase with the number of components and the packet sizes. The closed form expression of the delay was modeled using a logistic function in terms of the number of components and packet sizes. The model performed well when the number of components was large. ^ Based upon the mobility applications, energy consumption has become one of the most crucial limitations. SDR will not only provide flexibility of multi-protocol support, but this desirable feature will also bring a choice of mobile protocols. Having such a variety of choices available creates a problem in the selection of the most appropriate protocol to transmit. An investigation in a real-time algorithm to optimize energy efficiency was also performed. Communication energy models were used including switching estimation to develop a waveform selection algorithm. Simulations were performed to validate the concept.^
Resumo:
Rates of survival of victims of sudden cardiac arrest (SCA) using cardio pulmonary resuscitation (CPR) have shown little improvement over the past three decades. Since registered nurses (RNs) comprise the largest group of healthcare providers in U.S. hospitals, it is essential that they are competent in performing the four primary measures (compression, ventilation, medication administration, and defibrillation) of CPR in order to improve survival rates of SCA patients. The purpose of this experimental study was to test a color-coded SMOCK system on:1) time to implement emergency patient care measures 2) technical skills performance 3) number of medical errors, and 4) team performance during simulated CPR exercises. The study sample was 260 RNs (M 40 years, SD=11.6) with work experience as an RN (M 7.25 years, SD=9.42).Nurses were allocated to a control or intervention arm consisting of 20 groups of 5-8 RNs per arm for a total of 130 RNs in each arm. Nurses in each study arm were given clinical scenarios requiring emergency CPR. Nurses in the intervention group wore different color labeled aprons (smocks) indicating their role assignment (medications, ventilation, compression, defibrillation, etc) on the code team during CPR. Findings indicated that the intervention using color-labeled smocks for pre-assigned roles had a significant effect on the time nurses started compressions (t=3.03, p=0.005), ventilations (t=2.86, p=0.004) and defibrillations (t=2.00, p=.05) when compared to the controls using the standard of care. In performing technical skills, nurses in the intervention groups performed compressions and ventilations significantly better than those in the control groups. The control groups made significantly (t=-2.61, p=0.013) more total errors (7.55 SD 1.54) than the intervention group (5.60, SD 1.90). There were no significant differences in team performance measures between the groups. Study findings indicate use of colored labeled smocks during CPR emergencies resulted in: shorter times to start emergency CPR; reduced errors; more technical skills completed successfully; and no differences in team performance.
Resumo:
The ability to use Software Defined Radio (SDR) in the civilian mobile applications will make it possible for the next generation of mobile devices to handle multi-standard personal wireless devices and ubiquitous wireless devices. The original military standard created many beneficial characteristics for SDR, but resulted in a number of disadvantages as well. Many challenges in commercializing SDR are still the subject of interest in the software radio research community. Four main issues that have been already addressed are performance, size, weight, and power. This investigation presents an in-depth study of SDR inter-components communications in terms of total link delay related to the number of components and packet sizes in systems based on Software Communication Architecture (SCA). The study is based on the investigation of the controlled environment platform. Results suggest that the total link delay does not linearly increase with the number of components and the packet sizes. The closed form expression of the delay was modeled using a logistic function in terms of the number of components and packet sizes. The model performed well when the number of components was large. Based upon the mobility applications, energy consumption has become one of the most crucial limitations. SDR will not only provide flexibility of multi-protocol support, but this desirable feature will also bring a choice of mobile protocols. Having such a variety of choices available creates a problem in the selection of the most appropriate protocol to transmit. An investigation in a real-time algorithm to optimize energy efficiency was also performed. Communication energy models were used including switching estimation to develop a waveform selection algorithm. Simulations were performed to validate the concept.