2 resultados para Retrospective Data

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was threefold: first, to investigate variables associated with learning, and performance as measured by the National Council Licensure Examination for Registered Nurses (NCLEX-RN). The second purpose was to validate the predictive value of the Assessment Technologies Institute (ATI) achievement exit exam, and lastly, to provide a model that could be used to predict performance on the NCLEX-RN, with implications for admission and curriculum development. The study was based on school learning theory, which implies that acquisition in school learning is a function of aptitude (pre-admission measures), opportunity to learn, and quality of instruction (program measures). Data utilized were from 298 graduates of an associate degree nursing program in the Southeastern United States. Of the 298 graduates, 142 were Hispanic, 87 were Black, non-Hispanic, 54 White, non-Hispanic, and 15 reported as Others. The graduates took the NCLEX-RN for the first time during the years 2003–2005. This study was a predictive, correlational design that relied upon retrospective data. Point biserial correlations, and chi-square analyses were used to investigate relationships between 19 selected predictor variables and the dichotomous criterion variable, NCLEX-RN. The correlation and chi square findings indicated that men did better on the NCLEX-RN than women; Blacks had the highest failure rates, followed by Hispanics; older students were more likely to pass the exam than younger students; and students who passed the exam started and completed the nursing program with a higher grade point average, than those who failed the exam. Using logistic regression, five statistical models that used variables associated with learning and student performance on the NCLEX-RN were tested with a model adapted from Bloom's (1976) and Carroll's (1963) school learning theories. The derived model included: NCLEX-RNsuccess = f (Nurse Entrance Test and advanced medical-surgical nursing course grade achieved). The model demonstrates that student performance on the NCLEX-RN can be predicted by one pre-admission measure, and a program measure. The Assessment Technologies Institute achievement exit exam (an outcome measure) had no predictive value for student performance on the NCLEX-RN. The model developed accurately predicted 94% of the student's successful performance on the NCLEX-RN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.