4 resultados para Representative Core Samples

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to test 3 hypotheses: (a) that late Miocene to early Pliocene constriction and complete closure of the Central American Seaway (CAS), connecting tropical Atlantic and East Equatorial Pacific (EEP) oceans, caused decreased productivity in the Caribbean, due to reduced coastal upwelling and an end to the connection with high-productivity Pacific waters, (b) reduced paleoproductivity resulted in decreased diversity in the Caribbean and, (c) this decreased availability of food (reduced paleoproductivity) was responsible for larger mean test size in the three most common benthic foraminiferal species Epistominella exigua, Oridorsalis umbonatus and Globocassidulina subglobosa. ^ These are tested by applying correlation analysis to 7 groups of paleoceanographic proxies, 3 indices of diversity measures and mean test size data from the Caribbean Ocean Drilling Project Site 999, to 47 core samples for the interval between 8.3-2.5 Ma. Results are compared with published Caribbean and Pacific deep-sea records. ^ The Caribbean, between 8.3-7.9 Ma, experienced reduced current velocity and lower ventilation of bottom waters. Thereafter, until 4.2 Ma, the seasonality of phytodetritus input increased and ventilation further reduced. From 4.2-2.5 Ma, paleoproductivity decreased, current velocity reduced, ventilation improved, and the seasonality of phytodetrital input decreased dramatically. The benthic foraminiferal diversity followed the same trend as paleoproductivity. Individual correlation analysis between mean test size of benthic foraminiferal species Epistominella exigua, Oridorsalis umbonatus and Globocassidulina subglobosa and paleoceanographic proxies yielded a positive and significant relationship with paleoproductivity. However, a combined datasets of all 3 species yielded a negative and significant relationship with species abundance. ^ Thus, the study concludes that (a) the gradual closure of the CAS led Caribbean diversity and paleoproductivity to decrease abruptly at 7.9 Ma, when the nutrient-rich Pacific deep waters were cut off, and then, again with the complete closure of the seaway at 4.2 Ma, (b) diversity and paleoproductivity are positively correlated in the Caribbean and (c) that the availability of food is an overriding factor that influences mean test size; lower availability of food and decreased abundance leads to larger test size. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coastal ecosystems around the world are constantly changing in response to interacting shifts in climate and land and water use by expanding human populations. The development of agricultural and urban areas in South Florida significantly modified its hydrologic regime and influenced rates of environmental change in wetlands and adjacent estuaries. This study describes changes in diatom species composition through time from four sediment cores collected across Florida Bay, for the purposes of detecting periods of major shifts in assemblage structure and identifying major drivers of those changes. We examined the magnitude of diatom assemblage change in consecutive 2-cm samples of the 210Pb-dated cores, producing a record of the past ~130 years. Average assemblage dissimilarity among successive core samples was ~30%, while larger inter-sample and persistent differences suggest perturbations or directional shifts. The earliest significant compositional changes occurred in the late 1800s at Russell Bank, Bob Allen Bank and Ninemile Bank in the central and southwestern Bay, and in the early 1900s at Trout Cove in the northeast. These changes coincided with the initial westward redirection of water from Lake Okeechobee between 1881 and 1894, construction of several canals between 1910 and 1915, and building the Florida Overseas Railroad between 1906 and 1916. Later significant assemblage restructurings occurred in the northeastern and central Bay in the late 1950s, early 1960s and early 1970s, and in the southwestern Bay in the 1980s. These changes coincide with climate cycles driving increased hurricane frequency in the 1960s, followed by a prolonged dry period in the 1970s to late 1980s that exacerbated the effects of drainage operations in the Everglades interior. Changes in the diatom assemblage structure at Trout Cove and Ninemile Bank in the 1980s correspond to documented eutrophication and a large seagrass die-off. A gradual decrease in the abundance of freshwater to brackish water taxa in the cores over ~130 years implies that freshwater deliveries to Florida Bay were much greater prior to major developments on the mainland. Salinity, which was quantitatively reconstructed at these sites, had the greatest effect on diatom communities in Florida Bay, but other factors—often short-lived, natural and anthropogenic in nature—also played important roles in that process. Studying the changes in subfossil diatom communities over time revealed important environmental information that would have been undetected if reconstructing only one water quality variable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human scent and human remains detection canines are used to locate living or deceased humans under many circumstances. Human scent canines locate individual humans on the basis of their unique scent profile, while human remains detection canines locate the general scent of decomposing human remains. Scent evidence is often collected by law enforcement agencies using a Scent Transfer Unit, a dynamic headspace concentration device. The goals of this research were to evaluate the STU-100 for the collection of human scent samples, and to apply this method to the collection of living and deceased human samples, and to the creation of canine training aids. The airflow rate and collection material used with the STU-100 were evaluated using a novel scent delivery method. Controlled Odor Mimic Permeation Systems were created containing representative standard compounds delivered at known rates, improving the reproducibility of optimization experiments. Flow rates and collection materials were compared. Higher air flow rates usually yielded significantly less total volatile compounds due to compound breakthrough through the collection material. Collection from polymer and cellulose-based materials demonstrated that the molecular backbone of the material is a factor in the trapping and releasing of compounds. The weave of the material also affects compound collection, as those materials with a tighter weave demonstrated enhanced collection efficiencies. Using the optimized method, volatiles were efficiently collected from living and deceased humans. Replicates of the living human samples showed good reproducibility; however, the odor profiles from individuals were not always distinguishable from one another. Analysis of the human remains samples revealed similarity in the type and ratio of compounds. Two types of prototype training aids were developed utilizing combinations of pure compounds as well as volatiles from actual human samples concentrated onto sorbents, which were subsequently used in field tests. The pseudo scent aids had moderate success in field tests, and the Odor pad aids had significant success. This research demonstrates that the STU-100 is a valuable tool for dog handlers and as a field instrument; however, modifications are warranted in order to improve its performance as a method for instrumental detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutualistic symbioses between scleractinian corals and endosymbiotic dinoflagellates (Symbiodinium spp.) are the foundation of coral reef ecosystems. For many coral-algal symbioses, prolonged episodes of thermal stress damage the symbiont's photosynthetic capability, resulting in its expulsion from the host. Despite the link between photosynthetic competency and symbiont expulsion, little is known about the effect of thermal stress on the expression of photosystem genes in Symbiodinium. This study used real-time PCR to monitor the transcript abundance of two important photosynthetic reaction center genes, psbA(encoding the D1 protein of photosystem II) and psaA (encoding the P700 protein of photosystem I), in four cultured isolates (representing ITS2-types A13, A20, B1, and F2) and two in hospite Symbiodinium spp. within the coral Pocillopora spp. (ITS2-types C1b-c and D1). Both cultured and in hospite Symbiodinium samples were exposed to elevated temperatures (32°C) over a 7-day period and examined for changes in photochemistry and transcript abundance. Symbiodinium A13 and C1b-c (both thermally sensitive) demonstrated significant declines in both psbA and psaA during the thermal stress treatment, whereas the transcript levels of the other Symbiodinium types remained stable. The downregulation of both core photosystem genes could be the result of several different physiological mechanisms, but may ultimately limit repair rates of photosynthetic proteins, rendering some Symbiodinium spp. especially susceptible to thermal stress.