12 resultados para Representations of language
em Digital Commons at Florida International University
Resumo:
This dissertation establishes a novel data-driven method to identify language network activation patterns in pediatric epilepsy through the use of the Principal Component Analysis (PCA) on functional magnetic resonance imaging (fMRI). A total of 122 subjects’ data sets from five different hospitals were included in the study through a web-based repository site designed here at FIU. Research was conducted to evaluate different classification and clustering techniques in identifying hidden activation patterns and their associations with meaningful clinical variables. The results were assessed through agreement analysis with the conventional methods of lateralization index (LI) and visual rating. What is unique in this approach is the new mechanism designed for projecting language network patterns in the PCA-based decisional space. Synthetic activation maps were randomly generated from real data sets to uniquely establish nonlinear decision functions (NDF) which are then used to classify any new fMRI activation map into typical or atypical. The best nonlinear classifier was obtained on a 4D space with a complexity (nonlinearity) degree of 7. Based on the significant association of language dominance and intensities with the top eigenvectors of the PCA decisional space, a new algorithm was deployed to delineate primary cluster members without intensity normalization. In this case, three distinct activations patterns (groups) were identified (averaged kappa with rating 0.65, with LI 0.76) and were characterized by the regions of: (1) the left inferior frontal Gyrus (IFG) and left superior temporal gyrus (STG), considered typical for the language task; (2) the IFG, left mesial frontal lobe, right cerebellum regions, representing a variant left dominant pattern by higher activation; and (3) the right homologues of the first pattern in Broca's and Wernicke's language areas. Interestingly, group 2 was found to reflect a different language compensation mechanism than reorganization. Its high intensity activation suggests a possible remote effect on the right hemisphere focus on traditionally left-lateralized functions. In retrospect, this data-driven method provides new insights into mechanisms for brain compensation/reorganization and neural plasticity in pediatric epilepsy.
Resumo:
The article argues against an ahistorical deficit model of Spanish/English bilingualism in educational practice based on interlinguistic research. The bidirectional facilitative effects of Hispanic bilingualism allow Spanish-speaking minorities to exploit their language background while learning academic English and integrating their language and culture into the American mainstream.
Resumo:
Math literacy is imperative to succeed in society. Experience is key for acquiring math literacy. A preschooler's world is full of mathematical experiences. Children are continually counting, sorting and comparing as they play. As children are engaged in these activities they are using language as a tool to express their mathematical thinking. If teachers are aware of these teachable moments and help children bridge their daily experiences to mathematical concepts, math literacy may be enhanced. This study described the interactions between teachers and preschoolers, determining the extent to which teachers scaffold children's everyday language into expressions of mathematical concepts. Of primary concern were the teachers' responsive interactions to children's expressions of an implicit mathematical utterance made while engaged in block play. The parallel mixed methods research design consisted of two strands. Strand 1 of the study focused on preschoolers' use of everyday language and the teachers' responses after a child made a mathematical utterance. Twelve teachers and 60 students were observed and videotaped while engaged in block play. Each teacher worked with five children for 20 minutes, yielding 240 minutes of observation. Interaction analysis was used to deductively analyze the recorded observations and field notes. Using a priori codes for the five mathematical concepts, it was found children produced 2,831 mathematical utterances. Teachers ignored 60% of these utterances and responded to, but did not mediate 30% of them. Only 10% of the mathematical utterances were mediated to a mathematical concept. Strand 2 focused on the teacher's view of the role of language in early childhood mathematics. The 12 teachers who had been observed as part of the first strand of the study were interviewed. Based on a thematic analysis of these interviews three themes emerged: (a) the importance of a child's environment, (b) the importance of an education in society, and (c) the role of math in early childhood. Finally, based on a meta-inference of both strands, three themes emerged: (a) teacher conception of math, (b) teacher practice, and (c) teacher sensitivity. Implications based on the findings involve policy, curriculum, and professional development.
Resumo:
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.
Resumo:
Center for Humanities in an Urban Environment presents a forum featuring several individuals from the areas of Academics, journalism and theater, on the subject of violence in the Theater. Event held at GableStage, Coral Gables on September 12, 2012.
Resumo:
This dissertation establishes a novel data-driven method to identify language network activation patterns in pediatric epilepsy through the use of the Principal Component Analysis (PCA) on functional magnetic resonance imaging (fMRI). A total of 122 subjects’ data sets from five different hospitals were included in the study through a web-based repository site designed here at FIU. Research was conducted to evaluate different classification and clustering techniques in identifying hidden activation patterns and their associations with meaningful clinical variables. The results were assessed through agreement analysis with the conventional methods of lateralization index (LI) and visual rating. What is unique in this approach is the new mechanism designed for projecting language network patterns in the PCA-based decisional space. Synthetic activation maps were randomly generated from real data sets to uniquely establish nonlinear decision functions (NDF) which are then used to classify any new fMRI activation map into typical or atypical. The best nonlinear classifier was obtained on a 4D space with a complexity (nonlinearity) degree of 7. Based on the significant association of language dominance and intensities with the top eigenvectors of the PCA decisional space, a new algorithm was deployed to delineate primary cluster members without intensity normalization. In this case, three distinct activations patterns (groups) were identified (averaged kappa with rating 0.65, with LI 0.76) and were characterized by the regions of: 1) the left inferior frontal Gyrus (IFG) and left superior temporal gyrus (STG), considered typical for the language task; 2) the IFG, left mesial frontal lobe, right cerebellum regions, representing a variant left dominant pattern by higher activation; and 3) the right homologues of the first pattern in Broca's and Wernicke's language areas. Interestingly, group 2 was found to reflect a different language compensation mechanism than reorganization. Its high intensity activation suggests a possible remote effect on the right hemisphere focus on traditionally left-lateralized functions. In retrospect, this data-driven method provides new insights into mechanisms for brain compensation/reorganization and neural plasticity in pediatric epilepsy.
Resumo:
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.
Resumo:
The purpose of this study was to examine what secondary English to Speakers of Other Languages (ESOL) teachers understand about social and academic language, what instructional strategies they use for Limited English Proficient (LEP) students, and how these concepts are operationalized in their daily practice. ^ This was a mixed method study incorporating both quantitative and qualitative data collection and interpretation. Written questionnaires and individual interviews addressed the questions on teachers' definitions of social and academic language and their strategy use. Classroom observations provided verification of their definitions and their descriptions of instruction for academic language. ^ Findings indicated that teachers' definitions of social and academic language were still developing and that there were ambiguities in identifying examples of social and academic language. The use of graphic organizers or visual supports, groups or peer partners, role play or drama, and modeling were the strategies teachers consistently listed for beginner, intermediate, advanced and multiple level classes. Additionally, teachers' descriptions of their instruction were congruent with what was observed in their classroom practice. ^ It appeared that this population of secondary ESOL teachers was in the process of evolving their definitions of social and academic language and were at different stages in this evolution. Teachers' definitions of language influenced their instruction. Furthermore, those who had clear constructs of language were able to operationalize them in their classroom instruction. ^
Resumo:
The contextual demands of language in content area are difficult for ELLS. Content in the native language furthers students' academic development and native language skills, while they are learning English. Content in English integrates pedagogical strategies for English acquisition with subject area instruction. The following models of curriculum content are provided in most Miami Dade County Public Schools: (a) mathematics instruction in the native language with science instruction in English or (b) science instruction in the native language with mathematics instruction in English. The purpose of this study was to investigate which model of instruction is more contextually supportive for mathematics and science achievement. ^ A pretest and posttest, nonequivalent group design was used with 94 fifth grade ELLs who received instruction in curriculum model (a) or (b). This allowed for statistical analysis that detected a difference in the means of .5 standard deviations with a power of .80 at the .05 level of significance. Pretreatment and post-treatment assessments of mathematics, reading, and science achievement were obtained through the administration of Aprenda-Segunda Edición and the Florida Comprehensive Achievement Test. ^ The results indicated that students receiving mathematics in English and Science in Spanish scored higher on achievement tests in both Mathematics and Science than the students who received Mathematics in Spanish and Science in English. In addition, the mean score of students on the FCAT mathematics examination was higher than their mean score on the FCAT science examination regardless of the language of instruction. ^
Resumo:
This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient's extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.^
Resumo:
The diversity of ethnic and cultural groups and the effects of language in the therapeutic relationship are timely professional issues of concern to occupational therapy practitioners. The tri-ethnic, tri-cultural South Florida area offers a natural environment where one can study how patient-therapist interactions are influenced by language barriers in a diverse society. This study examines the effects of language on the adequacy of occupational therapy services, specifically how language affects the length of the treatment program. The nature of diagnosis therapists' ethnicity, and how they impact treatment outcomes are also addressed. A sample was drawn from the occupational therapy outpatient department of a large county hospital. Data taken from patients' charts examined race, sex, age, diagnosis, and language. Number of treatment sessions and length of treatment were viewed as proxy measures for adequacy. Findings indicate that the effect of language cannot be understood aside from ethnicity. Implications for occupational therapy practice are discussed.
Resumo:
This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient’s extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.