6 resultados para Repertory grid technique

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In broad terms — including a thief's use of existing credit card, bank, or other accounts — the number of identity fraud victims in the United States ranges 9-10 million per year, or roughly 4% of the US adult population. The average annual theft per stolen identity was estimated at $6,383 in 2006, up approximately 22% from $5,248 in 2003; an increase in estimated total theft from $53.2 billion in 2003 to $56.6 billion in 2006. About three million Americans each year fall victim to the worst kind of identity fraud: new account fraud. Names, Social Security numbers, dates of birth, and other data are acquired fraudulently from the issuing organization, or from the victim then these data are used to create fraudulent identity documents. In turn, these are presented to other organizations as evidence of identity, used to open new lines of credit, secure loans, “flip” property, or otherwise turn a profit in a victim's name. This is much more time consuming — and typically more costly — to repair than fraudulent use of existing accounts. ^ This research borrows from well-established theoretical backgrounds, in an effort to answer the question – what is it that makes identity documents credible? Most importantly, identification of the components of credibility draws upon personal construct psychology, the underpinning for the repertory grid technique, a form of structured interviewing that arrives at a description of the interviewee’s constructs on a given topic, such as credibility of identity documents. This represents substantial contribution to theory, being the first research to use the repertory grid technique to elicit from experts, their mental constructs used to evaluate credibility of different types of identity documents reviewed in the course of opening new accounts. The research identified twenty-one characteristics, different ones of which are present on different types of identity documents. Expert evaluations of these documents in different scenarios suggest that visual characteristics are most important for a physical document, while authenticated personal data are most important for a digital document. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In broad terms — including a thief's use of existing credit card, bank, or other accounts — the number of identity fraud victims in the United States ranges 9-10 million per year, or roughly 4% of the US adult population. The average annual theft per stolen identity was estimated at $6,383 in 2006, up approximately 22% from $5,248 in 2003; an increase in estimated total theft from $53.2 billion in 2003 to $56.6 billion in 2006. About three million Americans each year fall victim to the worst kind of identity fraud: new account fraud. Names, Social Security numbers, dates of birth, and other data are acquired fraudulently from the issuing organization, or from the victim then these data are used to create fraudulent identity documents. In turn, these are presented to other organizations as evidence of identity, used to open new lines of credit, secure loans, “flip” property, or otherwise turn a profit in a victim's name. This is much more time consuming — and typically more costly — to repair than fraudulent use of existing accounts. This research borrows from well-established theoretical backgrounds, in an effort to answer the question – what is it that makes identity documents credible? Most importantly, identification of the components of credibility draws upon personal construct psychology, the underpinning for the repertory grid technique, a form of structured interviewing that arrives at a description of the interviewee’s constructs on a given topic, such as credibility of identity documents. This represents substantial contribution to theory, being the first research to use the repertory grid technique to elicit from experts, their mental constructs used to evaluate credibility of different types of identity documents reviewed in the course of opening new accounts. The research identified twenty-one characteristics, different ones of which are present on different types of identity documents. Expert evaluations of these documents in different scenarios suggest that visual characteristics are most important for a physical document, while authenticated personal data are most important for a digital document.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In human society, people encounter various deontic conflicts every day. Deontic decisions are those that include moral, ethical, and normative aspects. Here, the concern is with deontic conflicts: decisions where all the alternatives lead to the violation of some norms. People think critically about these kinds of decisions. But, just ‘what’ they think about is not always clear. ^ People use certain estimating factors/criteria to balance the tradeoffs when they encounter deontic conflicts. It is unclear what subjective factors people use to make a deontic decision. An elicitation approach called the Open Factor Conjoint System is proposed, which applies an online elicitation methodology which is a combination of two well-know research methodologies: repertory grid and conjoint analysis. This new methodology is extended to be a web based application. It seeks to elicit additional relevant (subjective) factors from people, which affect deontic decisions. The relative importance and utility values are used for the development of a decision model to predict people’s decisions. ^ Fundamentally, this methodology was developed and intended to be applicable for a wide range of elicitation applications with minimal experimenter bias. Comparing with the traditional method, this online survey method reduces the limitation of time and space in data collection and this methodology can be applied in many fields. Two possible applications were addressed: robotic vehicles and the choice of medical treatment. In addition, this method can be applied to many research related disciplines in cross-cultural research due to its online ability with global capacity. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In human society, people encounter various deontic conflicts every day. Deontic decisions are those that include moral, ethical, and normative aspects. Here, the concern is with deontic conflicts: decisions where all the alternatives lead to the violation of some norms. People think critically about these kinds of decisions. But, just ‘what’ they think about is not always clear. People use certain estimating factors/criteria to balance the tradeoffs when they encounter deontic conflicts. It is unclear what subjective factors people use to make a deontic decision. An elicitation approach called the Open Factor Conjoint System is proposed, which applies an online elicitation methodology which is a combination of two well-know research methodologies: repertory grid and conjoint analysis. This new methodology is extended to be a web based application. It seeks to elicit additional relevant (subjective) factors from people, which affect deontic decisions. The relative importance and utility values are used for the development of a decision model to predict people’s decisions. Fundamentally, this methodology was developed and intended to be applicable for a wide range of elicitation applications with minimal experimenter bias. Comparing with the traditional method, this online survey method reduces the limitation of time and space in data collection and this methodology can be applied in many fields. Two possible applications were addressed: robotic vehicles and the choice of medical treatment. In addition, this method can be applied to many research related disciplines in cross-cultural research due to its online ability with global capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.