5 resultados para Reactions of (Anthracen-9-yl)methylsulphanes with DMAD
em Digital Commons at Florida International University
Resumo:
An extensive study of the reaction pathways of 1,1-dicyclopropyl ethylene, cis- and trans- 1,2-dicyclopropylethylenes has been undertaken with different electrophiles 4-methyl-1,2,4-triazoline-3,5-dione (MTAD), tetracyanoethylene (TCNE), and singlet oxygen $\rm(\sp1O\sb2).$ Comparison of reactivity and reaction mechanisms among the electrophiles is investigated. Singlet oxygen exhibits significantly lower reactivity compared to the other electrophiles. MTAD and TCNE react with dicyclopropylethylenes to produce predominantly $\sp{\prime\prime}2+2\sp{\prime\prime}$ adducts and a small amount of the "ene" adducts. The $\sp{\prime\prime}2+2\sp{\prime\prime}$ is the major product presumably because of the high activation energy leading to the highly strained "ene" products. Solvent trapping studies provide strong evidence of a "stepwise" mechanism, involving a zwitterionic or aziridinium imide as an intermediate from the study of the reactions products of dicyclopropylethylenes and MTAD. ^
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA's Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth's primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan's atmosphere, the ISM, and cold celestial bodies.<.
Resumo:
An extensive study of the reaction pathways of 1,1- dicyclopropyl ethylene, cis- and trans- 1,2-dicyclopropylethylenes has been undertaken with different electrophiles 4-methyl-1,2,4- triazoline-3,5-dione (MTAD), tetracyanoethylene (TCNE), and singlet oxygen (102). Comparison of reactivity and reaction mechanisms among the electrophiles is investigated. Singlet oxygen exhibits significantly lower reactivity compared to the other electrophiles. MTAD and TCNE react with dicyclopropylethylenes to produce predominantly "2+2" adducts and a small amount of the "ene" adducts. The "2+2" is the major product presumably because of the high activation energy leading to the highly strained "ene" products. Solvent trapping studies provide strong evidence of a "stepwise" mechanism, involving a zwitterionic or aziridinium imide as an intermediate from the study of the reactions products of dicyclopropylethylenes and MTAD.
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA’s Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth’s primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan’s atmosphere, the ISM, and cold celestial bodies.
Resumo:
The extent to which Registered Dietitians (RD) promote exercise as part of diabetes self-management education to older diabetic adults has not been established. This study explored the exercise-related knowledge, design, and content of educational programs among RDs who were Certified Diabetes Educators (CDEs) and non-CDEs. The Exercise Teaching Questionnaire was completed by 94 CDEs and 73 non-CDEs in Florida, California, and Texas. ^ CDEs had significantly (p < 0.001) higher mean Knowledge, Design, and Content scores (11.8 ± 1.1, 33.5 ± 9.4, 26.9 ± 4.8, respectively) than non-CDEs (11.1 ± 1.6, 29.2 ± 11.1, 22.4 ± 7.4, respectively). However, Knowledge means for both CDEs and non-CDEs were above the 85 percentile. Design and content scale responses showed that while dietitians provided basic information about safety and benefits related to exercise, they frequently reported “never” or only “sometimes” making exercise recommendations. ^ Although these results suggest that RDs are knowledgeable about exercise for older adults with Type 2 diabetes, greater importance should be made on training RDs to promote exercise, perhaps with an emphasis on a comprehensive team approach. ^