5 resultados para Reaction Time Task

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The kainate receptors are one of the three major groups of ionotropic glutamate receptors in the mammalian central nervous system. They are so named after their most potent agonist, kainic acid (KA), a natural product isolated from the seaweed Diginea simplex. This compound shows both neuroexcitatory and excitotoxic activities, and is an important pharmacological tool for neurophysiological studies. We predict that the more synthetically accessible aza analogues of kainic acid, could act as functional mimics of KA. These could be produced by the 1,3-dipolar cycloaddition of diazoalkanes with trans glutaconate esters. ^ 1,3-Dipolar cycloadditions have been shown to produce 1-pyrazolines that isomerize into 2-pyrazolines. The 1- and 2-pyrazolines can be precursors to aza analogs of kainoids. The regioselectivity, relative stereochemistry and isomerization of the 1-pyrazolines into 2-pyrazolines have been evaluated. Reductions of the 1- and 2-pyrazolines produced aza analogs of kainoids. TMS diazomethane was used as the dipole in 1,3-dipolar cycloaddition reactions leading to aza KA analogs via 2-pyrazolines. A systematic study of cycloaddition-isomerization processes involving TMS-diazomethane and various α, β-unsaturated dipolarophiles has been undertaken. 1H-NMR monitoring of the reaction mixture compositions during the cycloaddition reaction revealed evidence of retro-dipolar cycloaddition processes. Faster formation of 4,5- trans-1-pyrazoline at the beginning of the reaction and subsequent isomerization of this product into 4,5-cis-1-pyrazoline via a retro-dipolar cycloaddition has been observed. Increased reaction time and/or reaction temperature preferentially caused the irreversible isomerization of 4,5-cis-1-pyrazoline into 4,5-cis-2-pyrazoline, which led to high yields of 4,5-cis-2-pyrazolines in the overall process. ^ Two syntheses of the 5-unsubstituted aza-kainic acid have been performed; first, via the reduction of the TMS-eliminated 2-pyrazoline from TMS diazomethane; second by the direct reduction of 1-pyrazoline with Hg/Al-amalgam. 5-Phenyl aza-kainic acid has been produced by direct reduction of 1-pyrazoline, obtained in the reaction of phenyldiazomethane and dibenzyl glutaconate, with Hg/Al-amalgam. ^ Current responses to aza kainate analogs in Aplysia whole cell buccal ganglia indicate potent neuroexcitatory activity. The repetitive exposure of neuronal cells to the 5-unsubstituted aza-kainic acid led to non-desensitizing current responses, showing both binding affinity and neuronal ion-channel activation by the synthesized agonist compound. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Azulenyl nitrone (AZN) is a bright green compound that can be used to stain different compounds, including plastics. When these stained plastics are irradiated, as they commonly are in the sterilization of medical devices, AZN changes color from green to red, constituting a permanent change. This would make obsolete the current methods of radioactive labeling and maintain the integrity of medical equipment. Although a method of synthesis is already in place, the aim was to improve the yield significantly and find a more efficient and cost-effective procedure. Last year, the procedure used resulted in 18 to 20% of AZN synthesized at the most favorable conditions. With that in mind, this year modifications were done in the hopes of improving the yield. The solvent was changed to a mixture of isopropanol and triethylamine, a stronger base, and a catalytic amount of N-tertbutyl hydroxylamine hydrochloride was used (around 4 equivalents). The reaction time was also increased to 7 days, rather than 2. After several trials, the samples were run through column chromatography and the average yield was 70%, a much more promising result than that obtained last year. There is still research to be done to improve the technicalities of the procedure, including altering the amounts of N-tertbutyl hydroxylamine hydrochloride to try and obtain similar data with fewer amounts. This portion of the research will be done in the second half of the year. In the meantime, however, a novel and more efficient method of synthesis has been established for the production of AZN that can be potentially commercialized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Azulenyl nitrone (AZN) is a bright green compound that can be used to stain different compounds, including plastics. When these stained plastics are irradiated, as they commonly are in the sterilization of medical devices, AZN changes color from green to red, constituting a permanent change. This would make obsolete the current methods of radioactive labeling and maintain the integrity of medical equipment. Although a method of synthesis is already in place, the aim was to improve the yield significantly and find a more efficient and cost-effective procedure. Last year, the procedure used resulted in 18 to 20% of AZN synthesized at the most favorable conditions. With that in mind, this year modifications were done in the hopes of improving the yield. The solvent was changed to a mixture of isopropanol and triethylamine, a stronger base, and a catalytic amount of N-tertbutyl hydroxylamine hydrochloride was used (around 4 equivalents). The reaction time was also increased to 7 days, rather than 2. After several trials, the samples were run through column chromatography and the average yield was 70%, a much more promising result than that obtained last year. There is still research to be done to improve the technicalities of the procedure, including altering the amounts of N-tertbutyl hydroxylamine hydrochloride to try and obtain similar data with fewer amounts. This portion of the research will be done in the second half of the year. In the meantime, however, a novel and more efficient method of synthesis has been established for the production of AZN that can be potentially commercialized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present our approach to real-time service-oriented scheduling problems with the objective of maximizing the total system utility. Different from the traditional utility accrual scheduling problems that each task is associated with only a single time utility function (TUF), we associate two different TUFs—a profit TUF and a penalty TUF—with each task, to model the real-time services that not only need to reward the early completions but also need to penalize the abortions or deadline misses. The scheduling heuristics we proposed in this paper judiciously accept, schedule, and abort real-time services when necessary to maximize the accrued utility. Our extensive experimental results show that our proposed algorithms can significantly outperform the traditional scheduling algorithms such as the Earliest Deadline First (EDF), the traditional utility accrual (UA) scheduling algorithms, and an earlier scheduling approach based on a similar model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Older adults may have trouble when performing activities of daily living due to decrease in physical strength and degradation of neuromotor and musculoskeletal function. Motor activation patterns during Lateral Step Down and Step Up from 4-inch and 8-inch step heights was assessed in younger (n=8, 24.4 years) and older adults (n=8, 58.9 years) using joint angle kinematics and electromyography of lower extremity muscles. Ground reaction forces were used to ascertain the loading, stabilization and unloading phases of the tasks. Older adults had an altered muscle activation sequence and significantly longer muscle bursts during loading for the tibialis anterior, gastrocnemius, vastus medialis, bicep femoris, gluteus medius and gluteus maximus muscles of the stationary leg. They also demonstrated a significantly larger swing time (579.1 ms vs. 444.8 ms) during the step down task for the moving leg. The novel data suggests presence of age-related differences in motor coordination during lateral stepping.