2 resultados para Radiolysis

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ingestion of arsenic from contaminated water is a serious problem and affects the health of more than 100 million people worldwide. Traditional water purification technologies are generally not effective or cost prohibitive for the removal of arsenic to acceptable levels (≤10 ppb). Current multi-step arsenic removal processes involve oxidation, precipitation and/or adsorption. Advanced Oxidation Technologies (AOTs) may be attractive alternatives to existing treatments. The reactions of inorganic and organic arsenic species with reactive oxygen species were studied to develop a fundamental mechanistic understanding of these reactions, which is critical in identifying an effective and economical technology for treatment of arsenic contaminated water. ^ Detailed studies on the conversion of arsenite in aqueous media by ultrasonic irradiation and TiO2 photocatalytic oxidation (PCO) were conducted, focusing on the roles of hydroxyl radical and superoxide anion radical formed during the irradiation. ·OH plays the key role, while O2 -· has little or no role in the conversion of arsenite during ultrasonic irradiation. The reaction of O2-· does not contribute in the rapid conversion of As(III) when compared to the reaction of As(III) with ·OH radical during TiO2 PCO. Monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are readily degraded upon TiO2 PCO. DMA is oxidized to MMA as the intermediate and arsenate as the final product. For dilute solutions, TiO2 also may be applicable as an adsorbent for direct removal of arsenic species, namely As(III), As(V), MMA and DMA, all of which are strongly adsorbed, thus eliminating the need for a multi-step treatment process. ^ Phenylarsonic acid (PA) was subjected to gamma radiolysis under hydroxyl radical generating conditions, which showed rapid degradation of PA. Product analysis and computational calculation both indicate the arsenate group is an ortho, para director. Our results indicate · OH radical mediated processes should be effective for the remediation of phenyl substituted arsonic acids. ^ While hydroxyl radical generating methods, specifically AOTs, appear to be promising methods for the treatment of a variety of arsenic compounds in aqueous media, pilot studies and careful economic analyses will be required to establish the feasibility of AOTs applications in the removal of arsenic. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ribonucleotide reductases (RNR) are essential enzymes that catalyze the reduction of ribonucleotides to 2'-deoxyribonucleotides, which is a critical step that produces precursors for DNA replication and repair. The inactivation of RNR, logically, would discontinue producing the precursors of the DNA of viral or cancer cells, which then would consequently end the cycle of DNA replication. Among different compounds that were found to be inhibitors of RNR, 2'-azido-2'-deoxynucleotide diphosphates (N3NDPs) have been investigated in depth as potent inhibitors of RNR. Decades of investigation has suggested that the inactivation of RNR by N3NDPs is a result of the formation of a nitrogen-centered radical (N·) that is covalently attached to the nucleotide at C3' and cysteine molecule C225 [3'-C(R-S-N·-C-OH)]. Biomimetic simulation reactions for the generation of the nitrogen-centered radicals similar to the one observed during the inactivation of the RNR by azionuclotides was investigated. The study included several modes: (i) theoretical calculation that showed the feasibility of the ring closure reaction between thiyl radicals and azido group; (ii) synthesis of the model azido nucleosides with a linker attached to C3' or C5' having a thiol or vicinal dithiol functionality; (iii) generation of the thiyl radical under both physiological and radiolysis conditions whose role is important in the initiation on RNR cascades; and (iv) analysis of the nitrogen-centered radical species formed during interaction between the thiyl radical and azido group by electron paramagnetic resonance spectroscopy (EPR). Characterization of the aminyl radical species formed during one electron attachment to the azido group of 2'-azido-2'-deoxyuridine and its stereospecifically labelled 1'-, 2'-, 3'-, 4'- or 5,6-[2H 2]-analogues was also examined. This dissertation gave insight toward understanding the mechanism of the formation of the nitrogen-centered radical during the inactivation of RNRs by azidonucleotides as well as the mechanism of action of RNRs that might provide key information necessary for the development of the next generation of antiviral and anticancer drugs.