4 resultados para Radio in propaganda.

em Digital Commons at Florida International University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2 Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dr. Kenneth Johnson, Associate Professor of Arts and Humanities at Florida International University will speak on the nature of violence in the imagery of World War II propaganda material found at the Wolfsonian FIU Museum Archives. Lecture held on March 20, 2013 at the Green Library, Maidique Campus, Florida International University.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dr. Kenneth Johnson, Associate Professor of Arts and Humanities at Florida International University will speak on the nature of violence in the imagery of World War II propaganda material found at the Wolfsonian FIU Museum Archives. Lecture held on March 20, 2013 at the Green Library, Maidique Campus, Florida International University.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature.