13 resultados para Radical and Incremental ideas
em Digital Commons at Florida International University
Resumo:
Gasoline oxygenates (MTBE, methyl tert-butyl ether; DIPE, di-isopropyl ether; ETBE, ethyl tert-butyl ether; TAME, tert-amyl ether) are added to gasoline to boost octane and enhance combustion. The combination of large scale use, high water solubility and only minor biodegradability has now resulted in a significant gasoline oxygenate contamination occurring in surface, ground, and drinking water systems. Combination of hydroxyl radical formation and the pyrolytic environment generated by ultrasonic irradiation (665 kHz) leads to the rapid degradation of MTBE and other gasoline oxygenates in aqueous media. ^ The presence of oxygen promotes the degradation processes by rapid reaction with carbon centered radicals indicating radical processes involving O 2 are significant pathways. A number of the oxidation products were identified. The formation of products (alcohols, ketones, aldehydes, esters, peroxides, etc) could be rationalized by mechanisms which involve hydrogen abstraction by OH radical and/or pyrolysis to form carboncentered radicals which react with oxygen and follow standard oxidation chain processes. ^ The reactions of N-substituted R-triazolinediones (RTAD; R = CH 3 or phenyl) have attracted considerable interest because they exhibit a number of unusual mechanistic characteristics that are analogous to the reactions of singlet oxygen (1O2) and offer an easy way to provide C-N bond(s) formation. The reactions of triazolinedione with olefins have been widely studied and aziridinium imides are generally accepted to be the reactive intermediates. ^ We observed the rapid formation of an unusual intermediate upon mixing tetracyclopropylethylene with 4-methyl-1,2,4-triazoline-3,5-dione in CDCl 3. Detailed characterization by NMR (proton, 13C, 2-D NMRs) indicates the intermediate is 5,5,6,6-tetracyclopropyl-3-methyl-5,6-dihydro-oxazolo[3,2- b][1,2,4]-triazolium-2-olate. Such products are extremely rare and have not been studied. Upon warming the intermediate is converted to 2 + 2 diazetidine (major) and ene product (minor). ^ To further explore the kinetics and dynamics of the reaction activation energies were obtained using Arrhenius plots. Activation energies for the formation of the intermediate from reactants, and 2+2 adduct from the intermediate were determined as 7.48 kcal moll and 19.8 kcal mol−1 with their pre-exponential values of 2.24 × 105 dm 3 mol−1 sec−1 and 2.75 × 108 sec−1, respectively, meaning net slow reactions because of low pre-exponential values caused by steric hindrance. ^
Resumo:
Ribonucleotide reductases (RNR) are essential enzymes that catalyze the reduction of ribonucleotides to 2'-deoxyribonucleotides, which is a critical step that produces precursors for DNA replication and repair. The inactivation of RNR, logically, would discontinue producing the precursors of the DNA of viral or cancer cells, which then would consequently end the cycle of DNA replication. Among different compounds that were found to be inhibitors of RNR, 2'-azido-2'-deoxynucleotide diphosphates (N3NDPs) have been investigated in depth as potent inhibitors of RNR. Decades of investigation has suggested that the inactivation of RNR by N3NDPs is a result of the formation of a nitrogen-centered radical (N·) that is covalently attached to the nucleotide at C3' and cysteine molecule C225 [3'-C(R-S-N·-C-OH)]. Biomimetic simulation reactions for the generation of the nitrogen-centered radicals similar to the one observed during the inactivation of the RNR by azionuclotides was investigated. The study included several modes: (i) theoretical calculation that showed the feasibility of the ring closure reaction between thiyl radicals and azido group; (ii) synthesis of the model azido nucleosides with a linker attached to C3' or C5' having a thiol or vicinal dithiol functionality; (iii) generation of the thiyl radical under both physiological and radiolysis conditions whose role is important in the initiation on RNR cascades; and (iv) analysis of the nitrogen-centered radical species formed during interaction between the thiyl radical and azido group by electron paramagnetic resonance spectroscopy (EPR). Characterization of the aminyl radical species formed during one electron attachment to the azido group of 2'-azido-2'-deoxyuridine and its stereospecifically labelled 1'-, 2'-, 3'-, 4'- or 5,6-[2H 2]-analogues was also examined. This dissertation gave insight toward understanding the mechanism of the formation of the nitrogen-centered radical during the inactivation of RNRs by azidonucleotides as well as the mechanism of action of RNRs that might provide key information necessary for the development of the next generation of antiviral and anticancer drugs.
Resumo:
The presences of heavy metals, organic contaminants and natural toxins in natural water bodies pose a serious threat to the environment and the health of living organisms. Therefore, there is a critical need to identify sustainable and environmentally friendly water treatment processes. In this dissertation, I focus on the fundamental studies of advanced oxidation processes and magnetic nano-materials as promising new technologies for water treatments. Advanced oxidation processes employ reactive oxygen species (ROS) which can lead to the mineralization of a number of pollutants and toxins. The rates of formation, steady-state concentrations, and kinetic parameters of hydroxyl radical and singlet oxygen produced by various TiO2 photocatalysts under UV or visible irradiations were measured using selective chemical probes. Hydroxyl radical is the dominant ROS, and its generation is dependent on experimental conditions. The optimal condition for generation of hydroxyl radical by of TiO2 coated glass microspheres is studied by response surface methodology, and the optimal conditions are applied for the degradation of dimethyl phthalate. Singlet oxygen (1O2) also plays an important role for advanced processes, so the degradation of microcystin-LR by rose bengal, an 1O2 sensitizer was studied. The measured bimolecular reaction rate constant between MC-LR and 1O2 is ∼ 106 M-1 s-1 based on competition kinetics with furfuryl alcohol. The typical adsorbent needs separation after the treatment, while magnetic iron oxides can be easily removed by a magnetic field. Maghemite and humic acid coated magnetite (HA-Fe3O4) were synthesized, characterized and applied for chromium(VI) removal. The adsorption of chromium(VI) by maghemite and HA-Fe3O4 follow a pseudo-second-order kinetic process. The adsorption of chromium(VI) by maghemite is accurately modeled using adsorption isotherms, and solution pH and presence of humic acid influence adsorption. Humic acid coated magnetite can adsorb and reduce chromium(VI) to non-toxic chromium (III), and the reaction is not highly dependent on solution pH. The functional groups associated with humic acid act as ligands lead to the Cr(III) complex via a coupled reduction-complexation mechanism. Extended X-ray absorption fine structure spectroscopy demonstrates the Cr(III) in the Cr-loaded HA-Fe 3O4 materials has six neighboring oxygen atoms in an octahedral geometry with average bond lengths of 1.98 Å.
Resumo:
Goddesses in African religions are spirits that affect humans and demand reverence from them. They are also embodiments of ideas that African people have about women, their powers and their roles in society. This study focused on Mame Wata, a goddess in Half Assini, an Nzema-speaking coastal community in western Ghana. It sought to resolve a paradox, that is, the fact that, the goddess is at the center of a Pentecostalist tradition even though traditional Pentecostalism in Ghana views her as an agent of the devil. The study involved fieldwork in this community of the goddess's female worshippers led by Agyimah, a charismatic man, and an agent of the goddess. The study interpreted the goddess as a post-colonial invented symbol personifying both pre-colonial and emerging ideas about female power. Findings from the study also show that through Mame Wata the followers celebrate the spirituality of the female.
Resumo:
To reveal the theories and practices that linked education to the development within the cities of Boston and Buenos Aires, and in turn to the development of US and Argentina nationalism, “Cosmopolitan Imperialism” centers on two education reformers, Horace Mann (1776-1859) and Domingo Faustino Sarmiento (1811-1888). Mann and Sarmiento formed part of a supra-national community where liberal intellectual elites created a republic of letters, or perhaps better said, a republic of schools. As different versions of education branched out from a common Atlantic origin during the nineteenth century, Mann and Sarmiento searched for those ideas that better fit their national projects, a local project that started in the cities and moved to the interior parts of the country. In Boston and Buenos Aires, modern nationalism intertwined with imperial projects. This dissertation thus analyzes nationalism and reform in the nineteenth-century as an imperial project led by cosmopolitan intellectual elites. While we might expect to find Mann and Sarmiento’s ideas on education to be centered on their national experiences, looking to Europe for inspiration, this dissertation shows that it was quite the opposite. Educational ideas developed within an interconnected network and traveled within the North-South axis connecting Boston with Buenos Aires. This framework moves the focus from the interchange of ideas between America and Europe and places it within the American continent. At the same time, it allows us to consider Latin American and the US as both creators and recipients of educational ideas. There is a traditional way of talking about nationalism and reform in the nineteenth-century, especially in terms of education and educational policies. It is common to imagine that in the US, and even more certainly in Latin America, educated elites looked to the so-called West for inspiration. The argument is that they ended up adapting foreign models to their local and internal contexts. This dissertation challenges that idea and shows that different versions of education developed from a shared Atlantic milieu in which reformers in certain cities saw themselves as part of the same cosmopolitan empires.
Resumo:
This dissertation follows the political and literary ideas of the late Venezuelan writer Arturo Úslar Pietri. Analysis of his essayistic production focuses on his reflections on three major topics: universality, Latin Americanism, and Venezuelan national identity. By "universality" I refer to Úslar's reflections on general human culture and the way in which the crises of many ethical, philosophical, and scientific postulates of modernity are felt and expressed by this author through his critical appraisal of 20th-century history and culture. His most extensive and controversial reflections are those on Latin American identity, historical, socio-cultural and political processes, and philosophical thought, configuring what might be called a Latin American "rationality." National reflections follow the author's ideas on three topics: oil and its (mostly negative) impact on all aspects of Venezuelan life, the rescue of national history as a means to construct a Venezuelan identity, and the quest to identify/configure a national "subject" akin to the new rationality. My conclusion examines the essay-novel relationship as a compendium of Úslar's ideas and public political practices, as illustrated in his novels, where changing global realities are reflected in the most concrete aspects of Venezuelan daily life.^
Resumo:
Ingestion of arsenic from contaminated water is a serious problem and affects the health of more than 100 million people worldwide. Traditional water purification technologies are generally not effective or cost prohibitive for the removal of arsenic to acceptable levels (≤10 ppb). Current multi-step arsenic removal processes involve oxidation, precipitation and/or adsorption. Advanced Oxidation Technologies (AOTs) may be attractive alternatives to existing treatments. The reactions of inorganic and organic arsenic species with reactive oxygen species were studied to develop a fundamental mechanistic understanding of these reactions, which is critical in identifying an effective and economical technology for treatment of arsenic contaminated water. ^ Detailed studies on the conversion of arsenite in aqueous media by ultrasonic irradiation and TiO2 photocatalytic oxidation (PCO) were conducted, focusing on the roles of hydroxyl radical and superoxide anion radical formed during the irradiation. ·OH plays the key role, while O2 -· has little or no role in the conversion of arsenite during ultrasonic irradiation. The reaction of O2-· does not contribute in the rapid conversion of As(III) when compared to the reaction of As(III) with ·OH radical during TiO2 PCO. Monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are readily degraded upon TiO2 PCO. DMA is oxidized to MMA as the intermediate and arsenate as the final product. For dilute solutions, TiO2 also may be applicable as an adsorbent for direct removal of arsenic species, namely As(III), As(V), MMA and DMA, all of which are strongly adsorbed, thus eliminating the need for a multi-step treatment process. ^ Phenylarsonic acid (PA) was subjected to gamma radiolysis under hydroxyl radical generating conditions, which showed rapid degradation of PA. Product analysis and computational calculation both indicate the arsenate group is an ortho, para director. Our results indicate · OH radical mediated processes should be effective for the remediation of phenyl substituted arsonic acids. ^ While hydroxyl radical generating methods, specifically AOTs, appear to be promising methods for the treatment of a variety of arsenic compounds in aqueous media, pilot studies and careful economic analyses will be required to establish the feasibility of AOTs applications in the removal of arsenic. ^
Resumo:
Many culturally and linguistically diverse (CLD) students with specific learning disabilities (SLD) struggle with the writing process. Particularly, they have difficulties developing and expanding ideas, organizing and elaborating sentences, and revising and editing their compositions (Graham, Harris, & Larsen, 2001; Myles, 2002). Computer graphic organizers offer a possible solution to assist them in their writing. This study investigated the effects of a computer graphic organizer on the persuasive writing compositions of Hispanic middle school students with SLD. A multiple baseline design across subjects was used to examine its effects on six dependent variables: number of arguments and supporting details, number and percentage of transferred arguments and supporting details, planning time, writing fluency, syntactical maturity (measured by T-units, the shortest grammatical sentence without fragments), and overall organization. Data were collected and analyzed throughout baseline and intervention. Participants were taught persuasive writing and the writing process prior to baseline. During baseline, participants were given a prompt and asked to use paper and pencil to plan their compositions. A computer was used for typing and editing. Intervention required participants to use a computer graphic organizer for planning and then a computer for typing and editing. The planning sheets and written composition were printed and analyzed daily along with the time each participant spent on planning. The use of computer graphic organizers had a positive effect on the planning and persuasive writing compositions. Increases were noted in the number of supporting details planned, percentage of supporting details transferred, planning time, writing fluency, syntactical maturity in number of T-units, and overall organization of the composition. Minimal to negligible increases were noted in the mean number of arguments planned and written. Varying effects were noted in the percent of transferred arguments and there was a decrease in the T-unit mean length. This study extends the limited literature on the effects of computer graphic organizers as a prewriting strategy for Hispanic students with SLD. In order to fully gauge the potential of this intervention, future research should investigate the use of different features of computer graphic organizer programs, its effects with other writing genres, and different populations.
Resumo:
The superoxide radical is considered to play important roles in physiological processes as well as in the genesis of diverse cytotoxic conditions such as cancer, various cardiovascular disorders and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). The detection and quantification of superoxide within cells is of critical importance to understand biological roles of superoxide and to develop preventive strategies against free radical-mediated diseases. Cyclic nitrone spin traps such as DMPO, EMPO, DEPMPO, BMPO and their derivatives have been widely used in conjunction with ESR spectroscopy to detect cellular superoxide with some success. However, the formation of unstable superoxide adducts from the reaction of cyclic nitrones with superoxide is a stumbling block in detecting superoxide by using electron spin resonance (ESR). A chemiluminescent probe, lucigenin, and fluorogenic probes, hydroethidium and MitoSox, are the other frequently used methods in detecting superoxide. However, luceginen undergoes redox-cycling producing superoxide by itself, and hydroethidium and MitoSox react with other oxidants apart from superoxide forming red fluorescent products contributing to artefacts in these assays. Hence, both methods were deemed to be inappropriate for superoxide detection. In this study, an effective approach, a selective mechanism-based colorimetric detection of superoxide anion has been developed by using silylated azulenyl nitrones spin traps. Since a nitrone moiety and an adjacent silyl group react readily with radicals and oxygen anions respectively, such nitrones can trap superoxide efficiently because superoxide is both a radical and an oxygen anion. Moreover, the synthesized nitrone is designed to be triggered solely by superoxide and not by other commonly observed oxygen radicals such as hydroxyl radical, alkoxyl radicals and peroxyl radical. In vitro studies have shown that these synthesized silylated azylenyl nitrones and the mitochondrial-targeted guanylhydrazone analog can trap superoxide efficiently yielding UV-vis identifiable and even potentially fluorescence-detectable orange products. Therefore, the chromotropic detection of superoxide using these nitrones can be a promising method in contrast to other available methods.
Resumo:
This presentation will show how a grassroots initiative has budded into the Florida International University (FIU) Libraries being an instrumental part of online learning. It will describe some of the marketing and outreach efforts that have been successful and share ideas on how to build alliances and networks with online faculty and students. Along with outreach efforts, the presentation will demonstrate some of the successful tools used to meet the needs of online students. Some of the these tools include becoming embedded in courses, building course and program specific Libguides, using Adobe Connect to reach students, creating simple YouTube videos, and creating more professional videos with FIU Online. The presentation will conclude with sharing some tips on how to keep the workload manageable when distance-learning programs are growing at the same time as library budgets and resources are shrinking.
Resumo:
Natural dissolved organic matter (DOM) is the major absorber of sunlight in most natural waters and a critical component of carbon cycling in aquatic systems. The combined effect of light absorbance properties and related photo-production of reactive species are essential in determining the reactivity of DOM. Optical properties and in particular excitation–emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEM-PARAFAC) have been used increasingly to track sources and fate of DOM. Here we describe studies conducted in water from two estuarine systems in the Florida Everglades, with a salinity gradient of 2 to 37 and dissolved organic carbon concentrations from 19.3 to 5.74 mg C L−1, aimed at assessing how the quantity and quality of DOM is coupled to the formation rates and steady-state concentrations of reactive species including singlet oxygen, hydroxyl radical, and the triplet excited state of DOM. These species were related to optical properties and PARAFAC components of the DOM. The formation rate and steady-state concentration of the carbonate radical was calculated in all samples. The data suggests that formation rates, particularly for singlet oxygen and hydroxyl radicals, are strongly coupled to the abundance of terrestrial humic-like substances. A decrease in singlet oxygen, hydroxyl radical, and carbonate radical formation rates and steady-state concentration along the estuarine salinity gradient was observed as the relative concentration of terrestrial humic-like DOM decreased due to mixing with microbial humic-like and protein-like DOM components, while the formation rate of triplet excited-state DOM did not change. Fluorescent DOM was also found to be more tightly coupled to reactive species generation than chromophoric DOM.
Resumo:
Many culturally and linguistically diverse (CLD) students with specific learning disabilities (SLD) struggle with the writing process. Particularly, they have difficulties developing and expanding ideas, organizing and elaborating sentences, and revising and editing their compositions (Graham, Harris, & Larsen, 2001; Myles, 2002). Computer graphic organizers offer a possible solution to assist them in their writing. This study investigated the effects of a computer graphic organizer on the persuasive writing compositions of Hispanic middle school students with SLD. A multiple baseline design across subjects was used to examine its effects on six dependent variables: number of arguments and supporting details, number and percentage of transferred arguments and supporting details, planning time, writing fluency, syntactical maturity (measured by T-units, the shortest grammatical sentence without fragments), and overall organization. Data were collected and analyzed throughout baseline and intervention. Participants were taught persuasive writing and the writing process prior to baseline. During baseline, participants were given a prompt and asked to use paper and pencil to plan their compositions. A computer was used for typing and editing. Intervention required participants to use a computer graphic organizer for planning and then a computer for typing and editing. The planning sheets and written composition were printed and analyzed daily along with the time each participant spent on planning. The use of computer graphic organizers had a positive effect on the planning and persuasive writing compositions. Increases were noted in the number of supporting details planned, percentage of supporting details transferred, planning time, writing fluency, syntactical maturity in number of T-units, and overall organization of the composition. Minimal to negligible increases were noted in the mean number of arguments planned and written. Varying effects were noted in the percent of transferred arguments and there was a decrease in the T-unit mean length. This study extends the limited literature on the effects of computer graphic organizers as a prewriting strategy for Hispanic students with SLD. In order to fully gauge the potential of this intervention, future research should investigate the use of different features of computer graphic organizer programs, its effects with other writing genres, and different populations.
Resumo:
Domoic acid (DA) is a naturally occurring cyanotoxin, which upon ingestion, is responsible for amnesic shellfish poisoning (ASP) in both humans and animals. Produced by the marine diatom, Pseudonitzschia, DA is accumulated by a number of marine organisms including shellfish, clams and mussels which upon consumption can lead to headaches, nausea and seizures. Possessing a variety of functional groups the structure of DA contains three carboxyl groups, a pyrrole ring and a potent conjugated diene region allowing for binding to glutamate receptors in the dorsal hippocampus of the brain causing the described detrimental effects. Although limitations have been placed regarding the amount of DA that may be contained in seafood no limitations have been placed on the amount present in drinking water. Natural degradation of the toxin may occur through reactive oxygen species such as the hydroxyl radical and singlet oxygen at the conjugated diene region. In this work the photooxidation of DA via singlet oxygen has been studied using sorbic acid as a model compound. The three major reaction pathways observed during the photooxdiation process for both acids include 2 + 4 cycloaddition to produce endoperoxides , 2 + 2 reaction to afford aldehydes and ketones or an ene reaction to generate hydroperoxides. Under similar reaction conditions for SA and DA, the endoperoxide has been seen to be the major product for photoxidation of SA while the hydroperoxide has been seen to be the dominant product during photooxidation of DA.