12 resultados para Radar tracking and ranging

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airborne LIDAR (Light Detecting and Ranging) is a relatively new technique that rapidly and accurately measures micro-topographic features. This study compares topography derived from LIDAR with subsurface karst structures mapped in 3-dimensions with ground penetrating radar (GPR). Over 500 km of LIDAR data were collected in 1995 by the NASA ATM instrument. The LIDAR data was processed and analyzed to identify closed depressions. A GPR survey was then conducted at a 200 by 600 m site to determine if the target features are associated with buried karst structures. The GPR survey resolved two major depressions in the top of a clay rich layer at ~10m depth. These features are interpreted as buried dolines and are associated spatially with subtle (< 1m) trough-like depressions in the topography resolved from the LIDAR data. This suggests that airborne LIDAR may be a useful tool for indirectly detecting subsurface features associated with sinkhole hazard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. ^ In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly spaced LIDAR measurements. To reconstruct 3D building models, the raw 2D topology of each building is first extracted and then further adjusted. Since the adjusting operations for simple building models do not work well on 2D topology, 2D snake algorithm is proposed to adjust 2D topology. The 2D snake algorithm consists of newly defined energy functions for topology adjusting and a linear algorithm to find the minimal energy value of 2D snake problems. Data sets from urbanized areas including large institutional, commercial, and small residential buildings were employed to test the proposed framework. The results demonstrated that the proposed framework achieves a very good performance. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies of language minority students' performance focus on students' characteristics. This study uses qualitative methodology to examine instead how educational policies and practices affect the tracking of language minority students who are classified as limited English proficient (LEP). The placement of LEP students in core courses (English, Math, Social Studies, and Science) is seen as resulting from the interaction between school context and student characteristics. The school context includes factors such as equity policy requirements, overcrowding, attitudes regarding immigrants' academic potential, tracking, and testing practices. Interaction among these factors frequently leads to placement in lower track courses. It was found that the absence of formal tracks could be misleading to immigrant students, particularly those with high aspirations who do not understand the implications of the informal tracking system. Findings are discussed in relation to current theoretical explanations for minority student performance. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles' location and motion information, range queries on current and history data, and prediction of vehicles' movement in the near future. ^ To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. ^ Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. ^ An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to develop a GIS-based multi-class index overlay model to determine areas susceptible to inland flooding during extreme precipitation events in Broward County, Florida. Data layers used in the method include Airborne Laser Terrain Mapper (ALTM) elevation data, excess precipitation depth determined through performing a Soil Conservation Service (SCS) Curve Number (CN) analysis, and the slope of the terrain. The method includes a calibration procedure that uses "weights and scores" criteria obtained from Hurricane Irene (1999) records, a reported 100-year precipitation event, Doppler radar data and documented flooding locations. Results are displayed in maps of Eastern Broward County depicting types of flooding scenarios for a 100-year, 24-hour storm based on the soil saturation conditions. As expected the results of the multi-class index overlay analysis showed that an increase for the potential of inland flooding could be expected when a higher antecedent moisture condition is experienced. The proposed method proves to have some potential as a predictive tool for flooding susceptibility based on a relatively simple approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles’ location and motion information, range queries on current and history data, and prediction of vehicles’ movement in the near future. To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A character discovering and testing the limits of his emotional or psychological range most interests me. What will he choose to do? Stay within his old boundaries? Or try and go beyond them? What does he learn about himself in the process? And, finally, what price will be exacted, either for his staying where he is, or for his choosing a new level of self-knowledge? "The Short Reign Of Sultan Osman and Other Stories" is a collection of short stories set in either the United States, Greece, or Brazil, and ranging in time from 1972 to today. Each story presents its protagonist with challenges unique to a specific time and place. In most of these stories, the protagonists are driven by an urge for love or for mastery, and these urges send them across landscapes of delusion or folly before they can arrive at some sense of self-knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies of language minority students' performance focus on students' characteristics. This study uses qualitative methodology to examine instead how educational policies and practices affect the tracking of language minority students who are classified as limited English proficient (LEP). The placement of LEP students in core courses (English, Math, Social Studies, and Science) is seen as resulting from the interaction between school context and student characteristics. The school context includes factors such as equity policy requirements, overcrowding, attitudes regarding immigrants' academic potential, tracking, and testing practices. Interaction among these factors frequently leads to placement in lower track courses. It was found that the absence of formal tracks could be misleading to immigrant students, particularly those with high aspirations who do not understand the implications of the informal tracking system. Findings are discussed in relation to current theoretical explanations for minority student performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This presentation was given at the Digital Commons Southeastern User Group conference at Winthrop University, South Carolina on June 5, 2015. The presentation discusses how the digital collections center (DCC) at Florida International University uses Digital Commons as their tool for ingesting, editing, tracking, and publishing university theses and dissertations. The basic DCC workflow is covered as well as institutional repository promotion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical Rainfall Measuring Mission (TRMM) rainfall retrieval algorithms are evaluated in tropical cyclones (TCs). Differences between the Precipitation Radar (PR) and TRMM Microwave Imager (TMI) retrievals are found to be related to the storm region (inner core vs. rainbands) and the convective nature of the precipitation as measured by radar reflectivity and ice scattering signature. In landfalling TCs, the algorithms perform differently depending on whether the rainfall is located over ocean, land, or coastal surfaces. Various statistical techniques are applied to quantify these differences and identify the discrepancies in rainfall detection and intensity. Ground validation is accomplished by comparing the landfalling storms over the Southeast US to the NEXRAD Multisensor Precipitation Estimates (MPE) Stage-IV product. Numerous recommendations are given to algorithm users and developers for applying and interpreting these algorithms in areas of heavy and widespread tropical rainfall such as tropical cyclones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.