4 resultados para ROP, Security, Buffer Overflows, Open Source, Exploit
em Digital Commons at Florida International University
Resumo:
In recent years, a surprising new phenomenon has emerged in which globally-distributed online communities collaborate to create useful and sophisticated computer software. These open source software groups are comprised of generally unaffiliated individuals and organizations who work in a seemingly chaotic fashion and who participate on a voluntary basis without direct financial incentive. ^ The purpose of this research is to investigate the relationship between the social network structure of these intriguing groups and their level of output and activity, where social network structure is defined as (1) closure or connectedness within the group, (2) bridging ties which extend outside of the group, and (3) leader centrality within the group. Based on well-tested theories of social capital and centrality in teams, propositions were formulated which suggest that social network structures associated with successful open source software project communities will exhibit high levels of bridging and moderate levels of closure and leader centrality. ^ The research setting was the SourceForge hosting organization and a study population of 143 project communities was identified. Independent variables included measures of closure and leader centrality defined over conversational ties, along with measures of bridging defined over membership ties. Dependent variables included source code commits and software releases for community output, and software downloads and project site page views for community activity. A cross-sectional study design was used and archival data were extracted and aggregated for the two-year period following the first release of project software. The resulting compiled variables were analyzed using multiple linear and quadratic regressions, controlling for group size and conversational volume. ^ Contrary to theory-based expectations, the surprising results showed that successful project groups exhibited low levels of closure and that the levels of bridging and leader centrality were not important factors of success. These findings suggest that the creation and use of open source software may represent a fundamentally new socio-technical development process which disrupts the team paradigm and which triggers the need for building new theories of collaborative development. These new theories could point towards the broader application of open source methods for the creation of knowledge-based products other than software. ^
Resumo:
Florida International University has undergone a reform in the introductory physics classes by focusing on the laboratory component of these classes. We present results from the secondary implementation of two research-based instructional strategies: the implementation of the Learning Assistant model as developed by the University of Colorado at Boulder and the Open Source Tutorial curriculum developed at the University of Maryland, College Park. We examine the results of the Force Concept Inventory (FCI) for introductory students over five years (n=872) and find that the mean raw gain of students in transformed lab sections was 0.243, while the mean raw gain of the traditional labs was 0.159, with a Cohen’s d effect size of 0.59. Average raw gains on the FCI were 0.243 for Hispanic students and 0.213 for women in the transformed labs, indicating that these reforms are not widening the gaps between underrepresented student groups and majority groups. Our results illustrate how research-based instructional strategies can be successfully implemented in a physics department with minimal department engagement and in a sustainable manner.
Resumo:
In recent years, a surprising new phenomenon has emerged in which globally-distributed online communities collaborate to create useful and sophisticated computer software. These open source software groups are comprised of generally unaffiliated individuals and organizations who work in a seemingly chaotic fashion and who participate on a voluntary basis without direct financial incentive. The purpose of this research is to investigate the relationship between the social network structure of these intriguing groups and their level of output and activity, where social network structure is defined as 1) closure or connectedness within the group, 2) bridging ties which extend outside of the group, and 3) leader centrality within the group. Based on well-tested theories of social capital and centrality in teams, propositions were formulated which suggest that social network structures associated with successful open source software project communities will exhibit high levels of bridging and moderate levels of closure and leader centrality. The research setting was the SourceForge hosting organization and a study population of 143 project communities was identified. Independent variables included measures of closure and leader centrality defined over conversational ties, along with measures of bridging defined over membership ties. Dependent variables included source code commits and software releases for community output, and software downloads and project site page views for community activity. A cross-sectional study design was used and archival data were extracted and aggregated for the two-year period following the first release of project software. The resulting compiled variables were analyzed using multiple linear and quadratic regressions, controlling for group size and conversational volume. Contrary to theory-based expectations, the surprising results showed that successful project groups exhibited low levels of closure and that the levels of bridging and leader centrality were not important factors of success. These findings suggest that the creation and use of open source software may represent a fundamentally new socio-technical development process which disrupts the team paradigm and which triggers the need for building new theories of collaborative development. These new theories could point towards the broader application of open source methods for the creation of knowledge-based products other than software.