4 resultados para RIBOSOMAL DNA
em Digital Commons at Florida International University
Resumo:
Isla del Coco (Cocos Island) is a small volcanic island located in the Pacific 500 km west of Costa Rica. Three collecting trips to Isla del Coco, in addition to herbarium research, were completed in order to assess the floristic diversity of the island. The current flora of Isla del Coco contains 262 plant species of which 37 (19.4%) are endemic. This study reports 58 species as new to the island. Seventy-one species (27.1%) were identified as introduced by humans. In addition, five potentially invasive plant species are identified. Seven vegetation types are identified on the island: bayshore, coastal cliff, riparian, low elevation humid forest, high elevation cloud forest, landslide and islet. ^ The biogeographic affinities of the native and endemic species are with Central America/northern South America and to a lesser extent, the Caribbean. Endemic species in the genus Epidendrum were investigated to determine whether an insular radiation event had produced two species found on Isla del Coco. Phylogenetic analysis of the internal transcribed spacer (ITS) of nuclear ribosomal DNA was not able to disprove that the endemic species in this genus are not sister species. Molecular biogeographic analyses of ITS sequence data determined that the Isla del Coco endemic species in the genera Epidendrum, Pilea and Psychotria are most closely related to Central American/northern South American taxa. No biogeographical links were found between the floras of Isla del Coco and the Galápagos Islands. ^ The native and endemic plant diversity of Isla del Coco is threatened with habitat degradation by introduced pigs and deer, and to a lesser extent, by exotic plant species. The IUCN Red List and RAREplants criteria were used to assess the extinction threat for the 37 endemic plant taxa found on the island. All of the endemic species are considered threatened with extinction at the Critically Endangered (CR) by the IUCN criteria or either CR or Endangered (EN) using RAREplants methodology. ^
Resumo:
Dioon Lindl. (Zamiaceae) is a small genus restricted to Mexico (12 species) and Honduras (one species). Previous systematic studies have been unable to fully resolve species relationships within the genus. Phylogenetic analyses were conducted with data from several sources, including Restriction Fragment Length Polymorphisms from the chloroplast genome, morphology, two introns of the low copy nuclear gene S-adenosyl-L-homocysteine hydrolase (SAHH) and the 5.8S/ITS2 regions of the nuclear ribosomal DNA. The goals of the study were to construct a total evidence species level phylogeny and to explore current biogeographical hypotheses. None of the analyses performed produced a fully resolved topology. Dioon is comprised of two main lineages (the Edule and Spinulosum Clades), which represents an ancient divergence within the genus. The two introns of the nuclear gene SAHH offer additional evidence for the split into two lineages. Intron 2 contains a 18 bp deletion in the Spinulosum Clade, providing a synapomorphy for that group. The 5.8S/ITS2 regions were highly polymorphic and subsequently omitted from the combined analyses. In order to visualize congruence between morphology and molecular data, morphological characters were mapped onto the combined molecular tree. Current biogeographical hypotheses of a general northward pattern of migration and speciation are supported here. However, sister relationships within the Edule Clade are not fully resolved. Seven DNA microsatellite markers were developed to investigate patterns of genetic variation of seven populations of D. edule, a species restricted to Eastern Mexico. We found that most of the genetic variation lies within populations (Ho = 0.2166–0.3657) and that levels of population differentiation are low (Fst = 0.088); this finding is congruent with the breeding system of this species, dioicy. Four of the populations deviate from Hardy Weinberg Equilibrium and have a high number of identical genotypes, we suggest that this unexpected pattern is due to the life-history strategy of the species coupled with the few number of polymorphic loci detected in these populations. Our results are not congruent with earlier evidence from morphology and allozyme markers that suggest that the two northernmost populations represent a distinct entity that is recognized by some taxonomists as D. angustifolium.
Resumo:
The Caribbean Island Biodiversity Hotspot is the largest insular system of the New World and a priority for biodiversity conservation worldwide. The tribe Adeliae (Euphorbiaceae) has over 35 species endemic to this hotspot, representing one of the most extraordinary cases of speciation in the West Indies, involving taxa from Cuba, Hispaniola, Jamaica, and the Bahamas. These species form a monophyletic group and traditionally have been accommodated in two endemic genera: Lasiocroton and Leucocroton. A study based on: (1) scanning electron microscopy of pollen and trichomes, (2) macromorphology, and (3) molecular data, was conducted to reveal generic relationships within this group. Phylogenies were based on parsimony and Bayesian analyses of nucleotide sequences of the ITS regions of the nuclear ribosomal DNA and the non-coding chloroplast DNA spacers psbM-trnD and ycf6-pcbM. One species, Lasiocroton trelawniensis, was transferred from the tribe into the genus Bernardia. Of the remaining species, three major monophyletic assemblages were revealed, one was restricted to limestone ares of Hispaniola and was sister to a clade with two monophyletic genera, Lasiocroton and Leucocroton. Morphological, biogeographical, and ecological data provided additional support for each of these three monophyletic assemblages. The Hispaniolan taxa were accommodated in a new genus with four species: Garciadelia. Leucocroton includes the nickel hyperaccumulating species from serpentine soils of Cuba, while the rest of the species were placed in Lasiocroton, a genus restricted to limestone areas. The geographic history of the islands as well as the phylogenetic placement of the Leucocroton-alliance, allows the research to include the historical biogeography of the alliance across the islands of the Caribbean based on a dispersal-vicariance analysis. The alliance arose on Eastern Cuba and Hispaniola, with Lasiocroton and Leucocroton diverging on Eastern Cuba according to soil type. Within Leucocroton, the analysis shows two migrations across the serpentine soils of Cuba. Additional morphological, ecological, and phylogenetic analyses support four new species in Cuba (Lasiocroton gutierrezii) and Hispaniola ( Garciadelia abbottii, G. castilloae, and G. mejiae). ^
Resumo:
Jacquemontia reclinata House (Convolvulaceae) is a federally-listed endangered species endemic to coastal strand habitat of southeastern Florida, from Palm Beach to Miami-Dade counties. Although J. reclinata is currently defined as a species, its taxonomic distinctness has never been analyzed using phylogenetic evidence. In order to assess the evolutionary distinctness of J. reclinata and identify its closest relatives, internal transcribed spacer (ITS) regions within nuclear ribosomal DNA were sequenced, and the sequence data was used to reconstruct a phylogeny of Jacquemontia. The study included the three putative relatives of J. reclinata and all other species within Jacquemontia known to occur in the Greater Antilles and Bahamas, except for three species. Results concur with previous morphological studies, which suggest that J. reclinata is closely related to J. cayensis Britton, J. curtisii Peter, and J. havanensis Urban. These three species and J. reclinata form an unresolved clade. Therefore, it is not certain which of these Caribbean species is sister to J. reclinata. The lack of resolution within the clade that includes J. reclinata implies that the taxa within the clade are evolutionarily similar. Future taxonomic studies of J. reclinata should focus in resolving relationships within the Jacquemontia reclinata clade.