3 resultados para RECEPTOR-KNOCKOUT MICE

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nerve development, which includes axon outgrowth and guidance, is regulated by many protein families, including receptor protein tyrosine phosphatases (RPTP's).Protein tyrosine phosphatase receptor type 0 (PTPRO) is a type III RPTP that is important for axon growth and guidance, as observed in chicks and flies. In order to examine the effects ofPTPRO on mammalian development, standard behavioral tests were used to compare mice lacking the gene for PTPRO (ROKO mice) to wild-type (WT) mice. The ROKO mice showed a significant delay in reacting to a thermal noxious stimulus, hotplate analgesia, when compared to the WT mice suggesting deficient nociceptive function. In a rotarod test for proprioceptive function the ROKO mice exhibited a significant decrease in the amount of time spent on the rotating rod than did the WT mice. Additional proprioception tests were performed including the climb, step reflex, beam, and mesh walk tests. In the climb and step (place) test, the ROKO group had a significantly lower accuracy in performing the tests than did the WT mice. Thus, mice lacking the PTPRO gene showed behavioral deficiencies that reflect impairment in sensory function, specifically for nociception and proprioception.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Androgen receptor (AR) is commonly expressed in both the epithelium of normal mammary glands and in breast cancers. AR expression in breast cancers is independent of estrogen receptor alpha (ERα) status and is frequently associated with overexpression of the ERBB2 oncogene. AR signaling effects on breast cancer progression may depend on ERα and ERBB2 status. Up to 30% of human breast cancers are driven by overactive ERBB2 signaling and it is not clear whether AR expression affects any steps of tumor progression in this cohort of patients. To test this, we generated mammary specific Ar depleted mice (MARKO) by combining the floxed allele of Ar with the MMTV-cre transgene on an MMTV-NeuNT background and compared them to littermate MMTV-NeuNT, Arfl/+ control females. Heterozygous MARKO females displayed reduced levels of AR in mammary glands with mosaic AR expression in ductal epithelium. The loss of AR dramatically accelerated the onset of MMTV-NeuNT tumors in female MARKO mice. In this report we show that accelerated MMTV-NeuNT-dependent tumorigenesis is due specifically to the loss of AR, as hormonal levels, estrogen and progesterone receptors expression, and MMTV-NeuNT expression were similar between MARKO and control groups. MMTV-NeuNT induced tumors in both cohorts displayed distinct loss of AR in addition to ERα, PR, and the pioneer factor FOXA1. Erbb3 mRNA levels were significantly elevated in tumors in comparison to normal mammary glands. Thus the loss of AR in mouse mammary epithelium accelerates malignant transformation rather than the rate of tumorigenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neural crest cells (NCC) are a unique population of cells in vertebrates that arise between the presumptive epidermis and the dorsal most region of the neural tube. During neurulation, NCC migrate to many regions of the body to give rise to a wide variety of cell types. NCC that originate from the neural tube at the levels of somite 1-7 colonize the gut and give rise to the enteric ganglia. The endothelin signaling pathway has been shown to be crucial for proper development of some neural crest derivatives. Mice and humans with mutations in the Endothelin receptor b (Ednrb) gene exhibit similar phenotypes characterized by hypopigmentation, hearing loss, and megacolon. Thesephenotypes are due to lack of melanocytes in the skin, inner ear and enteric ganglia in the distal portion of the colon, respectively. It is well established that Ednrb is required early during the embryonic development for normal innervation of the gut. However, it is not clear if Ednrb acts on enteric neuron precursor cells or in pre-committed NC precursors. Additionally, it is controversial whether the action of Ednrb is cell autonomous or non- autonomous. We generated transgenic mice that express Ednrb under the control of the Nestin second intron enhancer (Nes) which drives expression to pre-migrating NCC. These mice were crosses to the spontaneous mouse mutant piebald lethal, which carriers a null mutation in Ednrb and exhibits enteric aganglionosis. The Nes-Ednrb was capable of rescuing the aganglianosis phenotype of piebald lethal mutants demonstrating that expression of Ednrb in pre-committed precursors is sufficient for normal enteric ganglia development. This study provides insight in early embryonic development of NCC and could eventually have potential use in cellular therapies for Hirschsprung's disease.