2 resultados para REAGENT
em Digital Commons at Florida International University
Resumo:
The kainoids are a class of non-proteinogenic pyrrolidine dicarboxylates that exhibit both excitatory and excitotoxic activities. These activities are a result of the ability of the kainoids to act as glutamate receptor agonists by activating ionotropic glutamate receptors. The parent of this group of compounds is α-kainic acid. Kainic acid is isolated from the seaweed Diginea simplex and has been used in Asian countries as a treatment for intestinal worms in children. In addition it is used extensively by neuropharmacologists for the study of glutamate receptors. Several years ago, the world's sole supplier of kainic acid discontinued this product. Since that time, other sources have appeared, however, the price of kainic acid remains significantly higher than it once was. We have thus been working on synthesizing aza analogs of kainoids which would be less costly but potentially potent alternatives to kainic acid via the dipolar cycloadditions of diazoalkanes with trans diethyl glutaconate. These 1, 3-dipolar cycloadditions yielded 2-pyrazolines or pyrazoles. The 2-pyrazolines may be precursors to aza analogs of kainoids. The regioselectivity of these 1, 3-dipolar cycloadditions and isomerization of the 1-pyrazolines to 2-pyrazolines was evaluated. Reductions of the 2-pyrazolines yielded aza analogs of kainoids.^ TMS diazomethane, due to the commercial availability, has been frequently used as a synthetic reagent in 1, 3-dipolar cycloadditions, particularly in the preparation of novel amino acid analogs. A survey of the recent literature indicates that the regioselectivity of the double bond isomerization of TMS substituted 1-pyrazolines is variable and at first glance, unpredictable. In an effort to develop a mechanistic rational for the isomerization which could account for the products obtained, a systematic survey of dipolar cycloadditions between TMS diazomethane and α, β-unsaturated dipolarophiles was undertaken. It was suggested that the steric demand of the dipolarophiles had a profound effect on both the relative stereochemistry of dipolar cycloaddition reactions of TMSCHN2 and the preferred direction of isomerization of the resulting 1-pyrazoline.^
Resumo:
Context: Accurately determining hydration status is a preventative measure for exertional heat illnesses (EHI). Objective: To determine the validity of various field measures of urine specific gravity (Usg) compared to laboratory instruments. Design: Observational research design to compare measures of hydration status: urine reagent strips (URS) and a urine color (Ucol) chart to a refractometer. Setting: We utilized the athletic training room of a Division I-A collegiate American football team. Participants: Trial 1 involved urine samples of 69 veteran football players (age=20.1+1.2yr; body mass=229.7+44.4lb; height=72.2+2.1in). Trial 2 involved samples from 5 football players (age=20.4+0.5yr; body mass=261.4+39.2lb; height=72.3+2.3in). Interventions: We administered the Heat Illness Index Score (HIIS) Risk Assessment, to identify athletes at-risk for EHI (Trial 1). For individuals “at-risk” (Trial 2), we collected urine samples before and after 15 days of pre-season “two-a-day” practices in a hot, humid environment(mean on-field WBGT=28.84+2.36oC). Main Outcome Measures: Urine samples were immediately analyzed for Usg using a refractometer, Diascreen 7® (URS1), Multistix® (URS2), and Chemstrip10® (URS3). Ucol was measured using Ucol chart. We calculated descriptive statistics for all main measures; Pearson correlations to assess relationships between the refractometer, each URS, and Ucol, and transformed Ucol data to Z-scores for comparison to the refractometer. Results: In Trial 1, we found a moderate relationship (r=0.491, p<.01) between URS1 (1.020+0.006μg) and the refractometer (1.026+0.010μg). In Trial 2, we found marked relationships for Ucol (5.6+1.6shades, r=0.619, p<0.01), URS2 (1.019+0.008μg, r=0.712, p<0.01), and URS3 (1.022+0.007μg, r=0.689, p<0.01) compared to the refractometer (1.028+0.008μg). Conclusions: Our findings suggest that URS were inconsistent between manufacturers, suggesting practitioners use the clinical refractometer to accurately determine Usg and monitor hydration status.