3 resultados para RAINWATER
em Digital Commons at Florida International University
Resumo:
Tree islands in the Everglades wetlands are centers of biodiversity and targets of restoration, yet little is known about the pattern of water source utilization by the constituent woody plant communities: upland hammocks and flooded swamp forests. Two potential water sources exist: (1) entrapped rainwater in the vadose zone of the organic soil (referred to as upland soil water), that becomes enriched in phosphorus, and (2) phosphorus-poor groundwater/surface water (referred to as regional water). Using natural stable isotope abundance as a tracer, we observed that hammock plants used upland soil water in the wet season and shifted to regional water uptake in the dry season, while swamp forest plants used regional water throughout the year. Consistent with the previously observed phosphorus concentrations of the two water sources, hammock plants had a greater annual mean foliar phosphorus concentration over swamp forest plants, thereby supporting the idea that tree island hammocks are islands of high phosphorus concentrations in the oligotrophic Everglades. Foliar nitrogen levels in swamp forest plants were higher than those of hammock plants. Linking water sources with foliar nutrient concentrations can indicate nutrient sources and periods of nutrient uptake, thereby linking hydrology with the nutrient regimes of different plant communities in wetland ecosystems. Our results are consistent with the hypotheses that (1) over long periods, upland tree island communities incrementally increase their nutrient concentration by incorporating marsh nutrients through transpiration seasonally, and (2) small differences in micro-topography in a wetland ecosystem can lead to large differences in water and nutrient cycles.
Resumo:
Saurochory (seed dispersal by reptiles) among crocodilians has largely been ignored, probably because these reptiles are generally assumed to be obligate carnivores incapable of digesting vegetable proteins and polysaccharides. Herein we review the literature on crocodilian diet, foraging ecology, digestive physiology and movement patterns, and provide additional empirical data from recent dietary studies of Alligator mississippiensis. We found evidence of frugivory in 13 of 18 (72.2%) species for which dietary information was available, indicating this behavior is widespread among the Crocodylia. Thirty-four families and 46 genera of plants were consumed by crocodilians. Fruit types consumed by crocodilians varied widely; over half (52.1%) were fleshy fruits. Some fruits are consumed as gastroliths or ingested incidental to prey capture; however, there is little doubt that on occasion, fruit is deliberately consumed, often in large quantities. Sensory cues involved in crocodilian frugivory are poorly understood, although airborne and waterborne cues as well as surface disturbances seem important. Crocodilians likely accrue nutritional benefits from frugivory and there are no a priori reasons to assume otherwise. Ingested seeds are regurgitated, retained in the stomach for indefinite and often lengthy periods, or passed through the digestive tract and excreted in feces. Chemical and mechanical scarification of seeds probably occurs in the stomach, but what effects these processes have on seed viability remain unknown. Because crocodilians have large territories and undertake lengthy movements, seeds are likely transported well beyond the parent plant before being voided. Little is known about the ultimate fate of seeds ingested by crocodilians; however, deposition sites could prove suitable for seed germination. Although there is no evidence for a crocodilian-specific dispersal syndrome similar to that described for other reptiles, our review strongly suggests that crocodilians function as effective agents of seed dispersal. Crocodilian saurochory offers a fertile ground for future research.
Resumo:
Major portion of hurricane-induced economic loss originates from damages to building structures. The damages on building structures are typically grouped into three main categories: exterior, interior, and contents damage. Although the latter two types of damages, in most cases, cause more than 50% of the total loss, little has been done to investigate the physical damage process and unveil the interdependence of interior damage parameters. Building interior and contents damages are mainly due to wind-driven rain (WDR) intrusion through building envelope defects, breaches, and other functional openings. The limitation of research works and subsequent knowledge gaps, are in most part due to the complexity of damage phenomena during hurricanes and lack of established measurement methodologies to quantify rainwater intrusion. This dissertation focuses on devising methodologies for large-scale experimental simulation of tropical cyclone WDR and measurements of rainwater intrusion to acquire benchmark test-based data for the development of hurricane-induced building interior and contents damage model. Target WDR parameters derived from tropical cyclone rainfall data were used to simulate the WDR characteristics at the Wall of Wind (WOW) facility. The proposed WDR simulation methodology presents detailed procedures for selection of type and number of nozzles formulated based on tropical cyclone WDR study. The simulated WDR was later used to experimentally investigate the mechanisms of rainwater deposition/intrusion in buildings. Test-based dataset of two rainwater intrusion parameters that quantify the distribution of direct impinging raindrops and surface runoff rainwater over building surface — rain admittance factor (RAF) and surface runoff coefficient (SRC), respectively —were developed using common shapes of low-rise buildings. The dataset was applied to a newly formulated WDR estimation model to predict the volume of rainwater ingress through envelope openings such as wall and roof deck breaches and window sill cracks. The validation of the new model using experimental data indicated reasonable estimation of rainwater ingress through envelope defects and breaches during tropical cyclones. The WDR estimation model and experimental dataset of WDR parameters developed in this dissertation work can be used to enhance the prediction capabilities of existing interior damage models such as the Florida Public Hurricane Loss Model (FPHLM).^