30 resultados para Query languages (Computer science)
em Digital Commons at Florida International University
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding and performance of computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: (1) identifying sources of computer science students’ difficulties with proofs by induction, and (2) developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding of and performance with computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: 1. identifying sources of computer science students’ difficulties with proofs by induction, and 2. developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
This research examines evolving issues in applied computer science and applies economic and business analyses as well. There are two main areas. The first is internetwork communications as embodied by the Internet. The goal of the research is to devise an efficient pricing, prioritization, and incentivization plan that could be realistically implemented on the existing infrastructure. Criteria include practical and economic efficiency, and proper incentives for both users and providers. Background information on the evolution and functional operation of the Internet is given, and relevant literature is surveyed and analyzed. Economic analysis is performed on the incentive implications of the current pricing structure and organization. The problems are identified, and minimally disruptive solutions are proposed for all levels of implementation to the lowest level protocol. Practical issues are considered and performance analyses are done. The second area of research is mass market software engineering, and how this differs from classical software engineering. Software life-cycle revenues are analyzed and software pricing and timing implications are derived. A profit maximizing methodology is developed to select or defer the development of software features for inclusion in a given release. An iterative model of the stages of the software development process is developed, taking into account new communications capabilities as well as profitability. ^
Resumo:
Because some Web users will be able to design a template to visualize information from scratch, while other users need to automatically visualize information by changing some parameters, providing different levels of customization of the information is a desirable goal. Our system allows the automatic generation of visualizations given the semantics of the data, and the static or pre-specified visualization by creating an interface language. We address information visualization taking into consideration the Web, where the presentation of the retrieved information is a challenge. ^ We provide a model to narrow the gap between the user's way of expressing queries and database manipulation languages (SQL) without changing the system itself thus improving the query specification process. We develop a Web interface model that is integrated with the HTML language to create a powerful language that facilitates the construction of Web-based database reports. ^ As opposed to other papers, this model offers a new way of exploring databases focusing on providing Web connectivity to databases with minimal or no result buffering, formatting, or extra programming. We describe how to easily connect the database to the Web. In addition, we offer an enhanced way on viewing and exploring the contents of a database, allowing users to customize their views depending on the contents and the structure of the data. Current database front-ends typically attempt to display the database objects in a flat view making it difficult for users to grasp the contents and the structure of their result. Our model narrows the gap between databases and the Web. ^ The overall objective of this research is to construct a model that accesses different databases easily across the net and generates SQL, forms, and reports across all platforms without requiring the developer to code a complex application. This increases the speed of development. In addition, using only the Web browsers, the end-user can retrieve data from databases remotely to make necessary modifications and manipulations of data using the Web formatted forms and reports, independent of the platform, without having to open different applications, or learn to use anything but their Web browser. We introduce a strategic method to generate and construct SQL queries, enabling inexperienced users that are not well exposed to the SQL world to build syntactically and semantically a valid SQL query and to understand the retrieved data. The generated SQL query will be validated against the database schema to ensure harmless and efficient SQL execution. (Abstract shortened by UMI.)^
Resumo:
If we classify variables in a program into various security levels, then a secure information flow analysis aims to verify statically that information in a program can flow only in ways consistent with the specified security levels. One well-studied approach is to formulate the rules of the secure information flow analysis as a type system. A major trend of recent research focuses on how to accommodate various sophisticated modern language features. However, this approach often leads to overly complicated and restrictive type systems, making them unfit for practical use. Also, problems essential to practical use, such as type inference and error reporting, have received little attention. This dissertation identified and solved major theoretical and practical hurdles to the application of secure information flow. ^ We adopted a minimalist approach to designing our language to ensure a simple lenient type system. We started out with a small simple imperative language and only added features that we deemed most important for practical use. One language feature we addressed is arrays. Due to the various leaking channels associated with array operations, arrays have received complicated and restrictive typing rules in other secure languages. We presented a novel approach for lenient array operations, which lead to simple and lenient typing of arrays. ^ Type inference is necessary because usually a user is only concerned with the security types for input/output variables of a program and would like to have all types for auxiliary variables inferred automatically. We presented a type inference algorithm B and proved its soundness and completeness. Moreover, algorithm B stays close to the program and the type system and therefore facilitates informative error reporting that is generated in a cascading fashion. Algorithm B and error reporting have been implemented and tested. ^ Lastly, we presented a novel framework for developing applications that ensure user information privacy. In this framework, core computations are defined as code modules that involve input/output data from multiple parties. Incrementally, secure flow policies are refined based on feedback from the type checking/inference. Core computations only interact with code modules from involved parties through well-defined interfaces. All code modules are digitally signed to ensure their authenticity and integrity. ^
Resumo:
Current technology permits connecting local networks via high-bandwidth telephone lines. Central coordinator nodes may use Intelligent Networks to manage data flow over dialed data lines, e.g. ISDN, and to establish connections between LANs. This dissertation focuses on cost minimization and on establishing operational policies for query distribution over heterogeneous, geographically distributed databases. Based on our study of query distribution strategies, public network tariff policies, and database interface standards we propose methods for communication cost estimation, strategies for the reduction of bandwidth allocation, and guidelines for central to node communication protocols. Our conclusion is that dialed data lines offer a cost effective alternative for the implementation of distributed database query systems, and that existing commercial software may be adapted to support query processing in heterogeneous distributed database systems. ^
Resumo:
An implementation of Sem-ODB—a database management system based on the Semantic Binary Model is presented. A metaschema of Sem-ODB database as well as the top-level architecture of the database engine is defined. A new benchmarking technique is proposed which allows databases built on different database models to compete fairly. This technique is applied to show that Sem-ODB has excellent efficiency comparing to a relational database on a certain class of database applications. A new semantic benchmark is designed which allows evaluation of the performance of the features characteristic of semantic database applications. An application used in the benchmark represents a class of problems requiring databases with sparse data, complex inheritances and many-to-many relations. Such databases can be naturally accommodated by semantic model. A fixed predefined implementation is not enforced allowing the database designer to choose the most efficient structures available in the DBMS tested. The results of the benchmark are analyzed. ^ A new high-level querying model for semantic databases is defined. It is proven adequate to serve as an efficient native semantic database interface, and has several advantages over the existing interfaces. It is optimizable and parallelizable, supports the definition of semantic userviews and the interoperability of semantic databases with other data sources such as World Wide Web, relational, and object-oriented databases. The query is structured as a semantic database schema graph with interlinking conditionals. The query result is a mini-database, accessible in the same way as the original database. The paradigm supports and utilizes the rich semantics and inherent ergonomics of semantic databases. ^ The analysis and high-level design of a system that exploits the superiority of the Semantic Database Model to other data models in expressive power and ease of use to allow uniform access to heterogeneous data sources such as semantic databases, relational databases, web sites, ASCII files, and others via a common query interface is presented. The Sem-ODB engine is used to control all the data sources combined under a unified semantic schema. A particular application of the system to provide an ODBC interface to the WWW as a data source is discussed. ^
Resumo:
Methods for accessing data on the Web have been the focus of active research over the past few years. In this thesis we propose a method for representing Web sites as data sources. We designed a Data Extractor data retrieval solution that allows us to define queries to Web sites and process resulting data sets. Data Extractor is being integrated into the MSemODB heterogeneous database management system. With its help database queries can be distributed over both local and Web data sources within MSemODB framework. ^ Data Extractor treats Web sites as data sources, controlling query execution and data retrieval. It works as an intermediary between the applications and the sites. Data Extractor utilizes a twofold “custom wrapper” approach for information retrieval. Wrappers for the majority of sites are easily built using a powerful and expressive scripting language, while complex cases are processed using Java-based wrappers that utilize specially designed library of data retrieval, parsing and Web access routines. In addition to wrapper development we thoroughly investigate issues associated with Web site selection, analysis and processing. ^ Data Extractor is designed to act as a data retrieval server, as well as an embedded data retrieval solution. We also use it to create mobile agents that are shipped over the Internet to the client's computer to perform data retrieval on behalf of the user. This approach allows Data Extractor to distribute and scale well. ^ This study confirms feasibility of building custom wrappers for Web sites. This approach provides accuracy of data retrieval, and power and flexibility in handling of complex cases. ^
Resumo:
Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. ^ This thesis describes a heterogeneous database system being developed at High-performance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii) a framework for intelligent computing and communication on the Internet applying the concepts of our work. ^
Resumo:
Query processing is a commonly performed procedure and a vital and integral part of information processing. It is therefore important and necessary for information processing applications to continuously improve the accessibility of data sources as well as the ability to perform queries on those data sources. ^ It is well known that the relational database model and the Structured Query Language (SQL) are currently the most popular tools to implement and query databases. However, a certain level of expertise is needed to use SQL and to access relational databases. This study presents a semantic modeling approach that enables the average user to access and query existing relational databases without the concern of the database's structure or technicalities. This method includes an algorithm to represent relational database schemas in a more semantically rich way. The result of which is a semantic view of the relational database. The user performs queries using an adapted version of SQL, namely Semantic SQL. This method substantially reduces the size and complexity of queries. Additionally, it shortens the database application development cycle and improves maintenance and reliability by reducing the size of application programs. Furthermore, a Semantic Wrapper tool illustrating the semantic wrapping method is presented. ^ I further extend the use of this semantic wrapping method to heterogeneous database management. Relational, object-oriented databases and the Internet data sources are considered to be part of the heterogeneous database environment. Semantic schemas resulting from the algorithm presented in the method were employed to describe the structure of these data sources in a uniform way. Semantic SQL was utilized to query various data sources. As a result, this method provides users with the ability to access and perform queries on heterogeneous database systems in a more innate way. ^
Resumo:
Modern software systems are often large and complicated. To better understand, develop, and manage large software systems, researchers have studied software architectures that provide the top level overall structural design of software systems for the last decade. One major research focus on software architectures is formal architecture description languages, but most existing research focuses primarily on the descriptive capability and puts less emphasis on software architecture design methods and formal analysis techniques, which are necessary to develop correct software architecture design. ^ Refinement is a general approach of adding details to a software design. A formal refinement method can further ensure certain design properties. This dissertation proposes refinement methods, including a set of formal refinement patterns and complementary verification techniques, for software architecture design using Software Architecture Model (SAM), which was developed at Florida International University. First, a general guideline for software architecture design in SAM is proposed. Second, specification construction through property-preserving refinement patterns is discussed. The refinement patterns are categorized into connector refinement, component refinement and high-level Petri nets refinement. These three levels of refinement patterns are applicable to overall system interaction, architectural components, and underlying formal language, respectively. Third, verification after modeling as a complementary technique to specification refinement is discussed. Two formal verification tools, the Stanford Temporal Prover (STeP) and the Simple Promela Interpreter (SPIN), are adopted into SAM to develop the initial models. Fourth, formalization and refinement of security issues are studied. A method for security enforcement in SAM is proposed. The Role-Based Access Control model is formalized using predicate transition nets and Z notation. The patterns of enforcing access control and auditing are proposed. Finally, modeling and refining a life insurance system is used to demonstrate how to apply the refinement patterns for software architecture design using SAM and how to integrate the access control model. ^ The results of this dissertation demonstrate that a refinement method is an effective way to develop a high assurance system. The method developed in this dissertation extends existing work on modeling software architectures using SAM and makes SAM a more usable and valuable formal tool for software architecture design. ^
Resumo:
Mediation techniques provide interoperability and support integrated query processing among heterogeneous databases. While such techniques help data sharing among different sources, they increase the risk for data security, such as violating access control rules. Successful protection of information by an effective access control mechanism is a basic requirement for interoperation among heterogeneous data sources. ^ This dissertation first identified the challenges in the mediation system in order to achieve both interoperability and security in the interconnected and collaborative computing environment, which includes: (1) context-awareness, (2) semantic heterogeneity, and (3) multiple security policy specification. Currently few existing approaches address all three security challenges in mediation system. This dissertation provides a modeling and architectural solution to the problem of mediation security that addresses the aforementioned security challenges. A context-aware flexible authorization framework was developed in the dissertation to deal with security challenges faced by mediation system. The authorization framework consists of two major tasks, specifying security policies and enforcing security policies. Firstly, the security policy specification provides a generic and extensible method to model the security policies with respect to the challenges posed by the mediation system. The security policies in this study are specified by 5-tuples followed by a series of authorization constraints, which are identified based on the relationship of the different security components in the mediation system. Two essential features of mediation systems, i. e., relationship among authorization components and interoperability among heterogeneous data sources, are the focus of this investigation. Secondly, this dissertation supports effective access control on mediation systems while providing uniform access for heterogeneous data sources. The dynamic security constraints are handled in the authorization phase instead of the authentication phase, thus the maintenance cost of security specification can be reduced compared with related solutions. ^
Resumo:
Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles' location and motion information, range queries on current and history data, and prediction of vehicles' movement in the near future. ^ To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. ^ Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. ^ An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed. ^
Resumo:
The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^
Resumo:
Software development is an extremely complex process, during which human errors are introduced and result in faulty software systems. It is highly desirable and important that these errors can be prevented and detected as early as possible. Software architecture design is a high-level system description, which embodies many system features and properties that are eventually implemented in the final operational system. Therefore, methods for modeling and analyzing software architecture descriptions can help prevent and reveal human errors and thus improve software quality. Furthermore, if an analyzed software architecture description can be used to derive a partial software implementation, especially when the derivation can be automated, significant benefits can be gained with regard to both the system quality and productivity. This dissertation proposes a framework for an integrated analysis on both of the design and implementation. To ensure the desirable properties of the architecture model, we apply formal verification by using the model checking technique. To ensure the desirable properties of the implementation, we develop a methodology and the associated tool to translate an architecture specification into an implementation written in the combination of Arch-Java/Java/AspectJ programming languages. The translation is semi-automatic so that many manual programming errors can be prevented. Furthermore, the translation inserting monitoring code into the implementation such that runtime verification can be performed, this provides additional assurance for the quality of the implementation. Moreover, validations for the translations from architecture model to program are provided. Finally, several case studies are experimented and presented.