5 resultados para Quality function deployment

em Digital Commons at Florida International University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We studied the development of leaf characters in two Southeast Asian dipterocarp forest trees under different photosynthetic photon flux densities (PFD) and spectral qualities (red to far-red, R:FR). The two species, Hopea helferi and H. odorata, are taxonomically closely related but differ in their ecological requirements; H. helferi is more drought tolerant and H. odorata more shade tolerant. Seedlings were grown in replicated shadehouse treatments of differing PFD and R:FR. We measured or calculated (1) leaf and tissue thicknesses; (2) mesophyll parenchyma, air space, and lignified tissue volumes; (3) mesophyll air volumes (Vmes/Asurf) and surfaces (Ames/Asurf); (4) palisade cell length and width; (5) chlorophyll/cm2 and a/ b; (6) leaf absorption; and (7) attenuance/absorbance at 652 and 550 nm. These characters varied in response to light conditions in both taxa. Characters were predominantly affected by PFD, and R:FR slightly influenced many characters. Leaf characters of H. odorata were more plastic in response to treatment conditions. Characters were correlated with each other in a complex fashion. Variation in leaf anatomy is most likely a consequence of increasing leaf thickness in both taxa, which may increase mechanical strength and defense against herbivory in more exposed environments. Variation in leaf optical properties was most likely affected by pigment photo-bleaching in treatments of more intense PFD and was not correlated with Amax. The greater plasticity of leaf responses in H. odorata helps explain the acclimation over the range of light conditions encountered by this shade-tolerant taxon. The dense layer of scales on the leaf undersurface and other anatomical characters in H. helferi reduced gas exchange and growth in this drought-tolerant tree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to low cost and easy deployment, multi-hop wireless networks become a very attractive communication paradigm. However, IEEE 802.11 medium access control (MAC) protocol widely used in wireless LANs was not designed for multi-hop wireless networks. Although it can support some kinds of ad hoc network architecture, it does not function efficiently in those wireless networks with multi-hop connectivity. Therefore, our research is focused on studying the medium access control in multi-hop wireless networks. The objective is to design practical MAC layer protocols for supporting multihop wireless networks. Particularly, we try to prolong the network lifetime without degrading performances with small battery-powered devices and improve the system throughput with poor quality channels. ^ In this dissertation, we design two MAC protocols. The first one is aimed at minimizing energy-consumption without deteriorating communication activities, which provides energy efficiency, latency guarantee, adaptability and scalability in one type of multi-hop wireless networks (i.e. wireless sensor network). Methodologically, inspired by the phase transition phenomena in distributed networks, we define the wake-up probability, which maintained by each node. By using this probability, we can control the number of wireless connectivity within a local area. More specifically, we can adaptively adjust the wake-up probability based on the local network conditions to reduce energy consumption without increasing transmission latency. The second one is a cooperative MAC layer protocol for multi-hop wireless networks, which leverages multi-rate capability by cooperative transmission among multiple neighboring nodes. Moreover, for bidirectional traffic, the network throughput can be further increased by using the network coding technique. It is a very helpful complement for current rate-adaptive MAC protocols under the poor channel conditions of direct link. Finally, we give an analytical model to analyze impacts of cooperative node on the system throughput. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altered freshwater inflows have affected circulation, salinity, and water quality patterns of Florida Bay, in turn altering the structure and function of this estuary. Changes in water quality and salinity and associated loss of dense turtle grass and other submerged aquatic vegetation (SAV) in Florida Bay have created a condition in the bay where sediments and nutrients have been regularly disturbed, frequently causing large and dense phytoplankton blooms. These algal and cyanobacterial blooms in turn often cause further loss of more recently established SAV, exacerbating the conditions causing the blooms. Chlorophyll a (CHLA) was selected as an indicator of water quality because it is an indicator of phytoplankton biomass, with concentrations reflecting the integrated effect of many of the water quality factors that may be altered by restoration activities. Overall, we assessed the CHLA indicator as being (1) relevant and reflecting the state of the Florida Bay ecosystem, (2) sensitive to ecosystem drivers (stressors, especially nutrient loading), (3) feasible to monitor, and (4) scientifically defensible. Distinct zones within the bay were defined according to statistical and consensual information. Threshold levels of CHLA for each zone were defined using historical data and scientific consensus. A presentation template of condition of the bay using these thresholds is shown as an example of an outreach product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive data sets on water quality and seagrass distributions in Florida Bay have been assembled under complementary, but independent, monitoring programs. This paper presents the landscape-scale results from these monitoring programs and outlines a method for exploring the relationships between two such data sets. Seagrass species occurrence and abundance data were used to define eight benthic habitat classes from 677 sampling locations in Florida Bay. Water quality data from 28 monitoring stations spread across the Bay were used to construct a discriminant function model that assigned a probability of a given benthic habitat class occurring for a given combination of water quality variables. Mean salinity, salinity variability, the amount of light reaching the benthos, sediment depth, and mean nutrient concentrations were important predictor variables in the discriminant function model. Using a cross-validated classification scheme, this discriminant function identified the most likely benthic habitat type as the actual habitat type in most cases. The model predicted that the distribution of benthic habitat types in Florida Bay would likely change if water quality and water delivery were changed by human engineering of freshwater discharge from the Everglades. Specifically, an increase in the seasonal delivery of freshwater to Florida Bay should cause an expansion of seagrass beds dominated by Ruppia maritima and Halodule wrightii at the expense of the Thalassia testudinum-dominated community that now occurs in northeast Florida Bay. These statistical techniques should prove useful for predicting landscape-scale changes in community composition in diverse systems where communities are in quasi-equilibrium with environmental drivers.