2 resultados para Quad-Tree decomposition

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

3D geographic information system (GIS) is data and computation intensive in nature. Internet users are usually equipped with low-end personal computers and network connections of limited bandwidth. Data reduction and performance optimization techniques are of critical importance in quality of service (QoS) management for online 3D GIS. In this research, QoS management issues regarding distributed 3D GIS presentation were studied to develop 3D TerraFly, an interactive 3D GIS that supports high quality online terrain visualization and navigation. ^ To tackle the QoS management challenges, multi-resolution rendering model, adaptive level of detail (LOD) control and mesh simplification algorithms were proposed to effectively reduce the terrain model complexity. The rendering model is adaptively decomposed into sub-regions of up-to-three detail levels according to viewing distance and other dynamic quality measurements. The mesh simplification algorithm was designed as a hybrid algorithm that combines edge straightening and quad-tree compression to reduce the mesh complexity by removing geometrically redundant vertices. The main advantage of this mesh simplification algorithm is that grid mesh can be directly processed in parallel without triangulation overhead. Algorithms facilitating remote accessing and distributed processing of volumetric GIS data, such as data replication, directory service, request scheduling, predictive data retrieving and caching were also proposed. ^ A prototype of the proposed 3D TerraFly implemented in this research demonstrates the effectiveness of our proposed QoS management framework in handling interactive online 3D GIS. The system implementation details and future directions of this research are also addressed in this thesis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence water levels have on CO2 and CH4 efflux were investigated at the Loxahatchee Impoundment Landscape Assessment (LILA) research facility, located in Boynton Beach, FL, USA. Measurements of CO2 efflux were taken for 24 h periods four times for one year from study plots. Laboratory incubations of intact soil cores were sampled for CO2, CH4, and redox potential. Additionally, soil cores from wet and dry condition were incubated for determination of enzyme activity and macronutrient limitation on decomposition of organic matter from study soils. Water levels had a significant negative influence on CO2 efflux and redox, but did not significantly influence CH4 efflux. Study plots were significantly different in CH4 efflux and redox potential. Labile carbon was more limiting to potential CO2 and CH4 production than phosphorus, with the effect significantly greater from dry conditions soils. Enzyme activity results were variable with greater macronutrient responses from dry condition soils.