2 resultados para Purkinje Cells

em Digital Commons at Florida International University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The heart beat is regulated by the cardiac conduction system (CCS), a specialized group of cells that transmit electrical impulses around the heart chambers. During development, ventricular CCS cells originate from embryonic cardiomyocytes and not from the neural crest. Nonetheless, discoveries in chick implied that the cardiac neural crest (CNC) cells contribute to proper development of the ventricular CCS. In this report, the Splotch mouse mutant (Pax3sp), in which the CNC cells do not migrate to the heart, was used to investigate whether these cells also affect proper CCS development in mammals. Homozygote mutants (Pax3Sp!Sp) are lethal on 111 Embryonic Day 13 (E13), and can be phenotyped by spina bifida and exencephaly. Pax3Spi+ mice were crossed to obtain wild type, Pax3 Spi+ and Pax3 Sp!Sp embryos. Comparison of hematoxylin and eosin stained histological sections showed less trabeculation in El2.5 cardiac ventricles of Pax3Sp!Sp. Furthermore, immunofluorescence analysis with the Purkinje fiber marker Cx40 showed a qualitative difference between wild type and mutant hearts. Quantitative analysis indicated that Pax3 Sp!Sp ventricles had fewer Cx40 expressing cells, as well as less Cx40 being expressed per cell when compared to wild type ventricles. Immunofluorescence with the H3 histome mitosis antibody showed fewer proliferating cells in the ventricles of mutant embryos when compared to controls. These results suggest that CNCC affect the morphogenesis of cardiac ventricles and the development of the ventricular CCS by contributing cellular proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coordinated beating of the heart depends on a group ofhighly specialized cells that constitute the cardiac conduction system. Among these cells, the Purkinje fibers are responsible for propagation of the electric impulse into the ventricles. In early stages of development, Purkinje fibers and skeletal muscle fibers originate from similar but separate populations of myocytes. The role of the MyoD family of transcription factors in the development of the myotube is well known, but the role of these factors in the development of the Purkinje fiber is not. Members of the T-Box family of transcription.The coordinated beating of the heart depends on a group ofhighly specialized cells that constitute the cardiac conduction system. Among these cells, the Purkinje fibers are responsible for propagation of the electric impulse into the ventricles. In early stages of development, Purkinje fibers and skeletal muscle fibers originate from similar but separate populations of myocytes. The role of the MyoD family of transcription factors in the development of the myotube is well known, but the role of these factors in the development of the Purkinje fiber is not. Members of the T-Box family of transcription factors are also involved in the development of various cardiac tissues, including the conduction system but little is known about their role in the development of the Purkinje fiber. We explored the expression of members of the MyoD and T-Box families in the developing cardiac conduction system in vivo and in vitro. We showed that the expression of these factors changes as the myocyte differentiates into the Purkinje fiber. We also showed that NRG-1, a secreted protein involved in the development of the Purkinje fiber, features a dose-dependent response in the differentiation of cultured ventricular myocytes.