4 resultados para Protein structure prediction
em Digital Commons at Florida International University
Resumo:
Hemoproteins are a very important class of enzymes in nature sharing the essentially same prosthetic group, heme, and are good models for exploring the relationship between protein structure and function. Three important hemoproteins, chloroperoxidase (CPO), horseradish peroxidase (HRP), and cytochrome P450cam (P450cam), have been extensively studied as archetypes for the relationship between structure and function. In this study, a series of 1D and 2D NMR experiments were successfully conducted to contribute to the structural studies of these hemoproteins. ^ During the epoxidation of allylbenzene, CPO is converted to an inactive green species with the prosthetic heme modified by addition of the alkene plus an oxygen atom forming a five-membered chelate ring. Complete assignment of the NMR resonances of the modified porphyrin extracted and demetallated from green CPO unambiguously established the structure of this porphyrin as an NIII-alkylated product. A novel substrate binding motif of CPO was proposed from this concluded regiospecific N-alkylation structure. ^ Soybean peroxidase (SBP) is considered as a more stable, more abundant and less expensive substitute of HRP for industrial applications. A NMR study of SBP using 1D and 2D NOE methods successfully established the active site structure of SBP and consequently fills in the blank of the SBP NMR study. All of the hyperfine shifts of the SBP-CN- complex are unambiguously assigned together with most of the prosthetic heme and all proximal His170 resonances identified. The active site structure of SBP revealed by this NMR study is in complete agreement with the recombinant SBP crystal structure and is highly similar to that of the HRP with minor differences. ^ The NMR study of paramagnetic P450cam had been greatly restricted for a long time. A combination of 2D NMR methods was used in this study for P450cam-CN - complexes with and without camphor bound. The results lead to the first unequivocal assignments of all heme hyperfine-shifted signals, together with certain correlated diamagnetic resonances. The observed alternation of the assigned novel proximal cysteine β-CH2 resonances induced by camphor binding indicated a conformational change near the proximal side.^
Resumo:
Mechanistically and structurally chloroperoxidase (CPO) occupies a unique niche among heme containing enzymes. Chloroperoxidase catalyzes a broad range of reactions, such as oxidation of organic substrates, dismutation of hydrogen peroxide, and mono-oxygenation of organic molecules. To expand the synthetic utility of CPO and to appreciate the important interactions that lead to CPO’s exceptional properties, a site-directed mutagenesis study was undertaken. ^ Recombinant CPO and CPO mutants were heterologously expressed in Aspergillus niger. The overall protein structure was almost the same as that of wild type CPO, as determined by UV-vis, NMR and CD spectroscopies. Phenylalanine103, which was proposed to regulate substrate access to the active site by restricting the size of substrates and to control CPO’s enantioselectivity, was mutated to Ala. The ligand binding affinity and most importantly the catalytic activity of F103A was dramatically different from wild type CPO. The mutation essentially eliminated the chlorination and dismutation activities but enhanced, 4-10 fold, the epoxidation, peroxidation, and N-demethylation activities. As expected, the F103A mutant displayed dramatically improved epoxidation activity for larger, more branched styrene derivatives. Furthermore, F103A showed a distinctive enantioselectivity profile: losing enantioselectivity to styrene and cis-β-methylstyrene; having a different configuration preference on α-methylstyrene; showing higher enantioselectivites and conversion rates on larger, more branched substrates. Our results show that F103 acts as a switch box that controls the catalytic activity, substrate specificity, and product enantioselectivity of CPO. Given that no other mutant of CPO has displayed distinct properties, the results with F103A are dramatic. ^ The diverse catalytic activity of CPO has long been attributed to the presence of the proximal thiolate ligand. Surprisingly, a recent report on a C29H mutant suggested otherwise. A new CPO triple mutant C29H/C79H/C87H was prepared, in which all the cysteines were replaced by histidine to eliminate the possibility of cysteine coordinating to the heme. No active form protein was isolated, although, successful transformation and transcription was confirmed. The result suggests that Cys79 and Cys87 are critical to maintaining the structural scaffold of CPO. ^ In vitro biodegradation of nanotubes by CPO were examined by scanning electron microscope method, but little oxidation was observed. ^
Resumo:
Humoral and cells surface molecules of the mammalian immune system, grouped into the Immunoglobulin Gene Superfamily, share protein structure and gene sequence homologies with molecules found among diverse phylogenetic groups. In histocompatibility studies, the gorgonian coral Swiftia exserta has recently demonstrated specific alloimmunity with memory (Salter-Cid and Bigger, 1991. Biological Bulletin Vol 181). In an attempt to shed light on the origins of this gene family and the evolution of the vertebrate immune response, genomic DNA from Swiftia exserta was isolated, purified, and analyzed by Southern blot hybridization with mouse gene probes corresponding to two molecules of the Immunoglobulin Gene Superfamily, the Thy-1 antigen, and the alpha-3 domain of the MHC Class I histocompatibility marker. Hybridizations were conducted under low to non-stringent conditions to allow binding of mismatched homologs that may exist between the mouse gene probes and the Swiftia DNA. Removal of non-specific binding (sequences less than 70% homologous) occurred in washing steps. Results show that with the probes selected, the method chosen, and the conditions applied, no evidence of sequences of 70% or greater homology to the mouse Thy-1 or MHC Class I alpha-3 genes exist in Swiftia exserta genome.
Resumo:
The focus of this study is to elucidate the components of the nurse shark (Ginglymostoma cirratum) membrane attack complex (MAC), specifically complement component C8a (GcC8u). Nurse shark C8a gene was cloned, sequenced, and analyzed and Western blot analysis performed to identify components of shark MAC. GcC8a consists of 2341 nucleotides that translate into a 589 amino acid sequence that shares 41.1% and 47.4 % identity with human and xenopus C8a, respectively. GcC8a conserves the MAC modular architecture and cysteine-rich backbone characteristic of complement proteins, including the cysteine residue that forms the C8a-y bond as well as the indel that is unique to C8a. Conservation of MAC protein structure is evident from crossreactivity of antihuman-MAC antibodies with shark serum proteins in Western blots which confirmed the presence of C8 and C9-like proteins in shark serum, however, did not resolve the question of whether C6 and/or C7 like proteins are present in shark.