3 resultados para Project portfolio management (ppm)

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the 1990s, scholars have paid special attention to public management’s role in theory and research under the assumption that effective management is one of the primary means for achieving superior performance. To some extent, this was influenced by popular business writings of the 1980s as well as the reinventing literature of the 1990s. A number of case studies but limited quantitative research papers have been published showing that management matters in the performance of public organizations. ^ My study examined whether or not management capacity increased organizational performance using quantitative techniques. The specific research problem analyzed was whether significant differences existed between high and average performing public housing agencies on select criteria identified in the Government Performance Project (GPP) management capacity model, and whether this model could predict outcome performance measures in a statistically significant manner, while controlling for exogenous influences. My model included two of four GPP management subsystems (human resources and information technology), integration and alignment of subsystems, and an overall managing for results framework. It also included environmental and client control variables that were hypothesized to affect performance independent of management action. ^ Descriptive results of survey responses showed high performing agencies with better scores on most high performance dimensions of individual criteria, suggesting support for the model; however, quantitative analysis found limited statistically significant differences between high and average performers and limited predictive power of the model. My analysis led to the following major conclusions: past performance was the strongest predictor of present performance; high unionization hurt performance; and budget related criterion mattered more for high performance than other model factors. As to the specific research question, management capacity may be necessary but it is not sufficient to increase performance. ^ The research suggested managers may benefit by implementing best practices identified through the GPP model. The usefulness of the model could be improved by adding direct service delivery to the model, which may also improve its predictive power. Finally, there are abundant tested concepts and tools designed to improve system performance that are available for practitioners designed to improve management subsystem support of direct service delivery.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrastructure management agencies are facing multiple challenges, including aging infrastructure, reduction in capacity of existing infrastructure, and availability of limited funds. Therefore, decision makers are required to think innovatively and develop inventive ways of using available funds. Maintenance investment decisions are generally made based on physical condition only. It is important to understand that spending money on public infrastructure is synonymous with spending money on people themselves. This also requires consideration of decision parameters, in addition to physical condition, such as strategic importance, socioeconomic contribution and infrastructure utilization. Consideration of multiple decision parameters for infrastructure maintenance investments can be beneficial in case of limited funding. Given this motivation, this dissertation presents a prototype decision support framework to evaluate trade-off, among competing infrastructures, that are candidates for infrastructure maintenance, repair and rehabilitation investments. Decision parameters' performances measured through various factors are combined to determine the integrated state of an infrastructure using Multi-Attribute Utility Theory (MAUT). The integrated state, cost and benefit estimates of probable maintenance actions are utilized alongside expert opinion to develop transition probability and reward matrices for each probable maintenance action for a particular candidate infrastructure. These matrices are then used as an input to the Markov Decision Process (MDP) for the finite-stage dynamic programming model to perform project (candidate)-level analysis to determine optimized maintenance strategies based on reward maximization. The outcomes of project (candidate)-level analysis are then utilized to perform network-level analysis taking the portfolio management approach to determine a suitable portfolio under budgetary constraints. The major decision support outcomes of the prototype framework include performance trend curves, decision logic maps, and a network-level maintenance investment plan for the upcoming years. The framework has been implemented with a set of bridges considered as a network with the assistance of the Pima County DOT, AZ. It is expected that the concept of this prototype framework can help infrastructure management agencies better manage their available funds for maintenance.