7 resultados para Processing of fish
em Digital Commons at Florida International University
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as “histogram binning” inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. ^ Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. ^ The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. ^ These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. ^ In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation. ^
Resumo:
The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^
Resumo:
In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.
Resumo:
Rated trust in intuitive efficacy (measured as trust, belief, use, accuracy and weighting of intuition) was investigated as a predictor of self-designated use of intuitive (hunch and hunch plus evidential belief) vs. deliberative (evidential belief and evidential belief plus hunch) deception detection judgments and actual accuracy. Twenty-nine student participants were filmed as they made true and deceptive statements about their everyday activities on a given evening (last Friday night), and college students (N=238) judged 20 (10=true, 10=deceptive) of these filmed statements as truthful or deceptive. Participants provided ratings of reliance on hunches vs. evidential belief, confidence in film judgments, intuitive efficacy, accuracy in deception detection, reliance on cues to deception, and experiences with intuition. Generalized estimated equation modeling using binary logistics demonstrated accuracy in identifying true vs. deceptive statements was predicted by film number, hunch-evidence ratings, weighting of intuition, and total cues cited. Weighting of intuition was predictive of accuracy across participants, with higher weighting predictive of higher accuracy in general. Participants who cited evidential belief plus hunch and moderate to high weighting incorrectly reversed their true vs. deceptive judgments. Accuracy for true statements was higher for hunches and hunch plus evidential belief, whereas accuracy for deceptive statements was higher for evidential belief Accuracy for participants who relied on evidential belief plus hunch was at chance. Subjective experiences underlying judgments differed by participant and type of film viewed (true vs. deceptive) and were predicted by hunch-evidence ratings, trust, use, intuitive accuracy, and total cues cited. Trust predicted increases in judging films to be true, whereas use and accuracy predicted increases in judging films as deceptive; none were predictive of accuracy. Increased number of cues cited predicted judgments of deception, whereas decreased number of cues cited predicted truth. The study concluded that participants have the capacity to self-define their judgments as subjectively vs. deliberately based, provide subjective assessments of the influence of intuitive vs. objective information on their judgments, and can apply this self-knowledge, through effective weighting of intuition vs. other types of information, in making accurate judgments of true and deceptive everyday statements.
Resumo:
The purpose of this study was to analyze the interrelations between the needs of local people and their usage and management of natural fisheries. Between June and August 2001, 177 households in the basin were interviewed regarding their fishing customs. The results were analyzed with parametric and nonparametric statistics considering a cultural and a geographic comparison. Results confirm that indigenous households rely more on fisheries as a resource than colonists. Fishing takes place throughout the year but is more common in the dry season. Fishing is commonly practiced using hooks and cast nets. More destructive techniques such as dynamite and "barbasco" (poisonous plant) were also used. Indigenous people use a greater array of techniques and they fish at a greater diversity of sites. Respondents also reported that fishing yields have decreased recently. Some of the most common fish genera captured are Pimelodus and Leporinus.
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as "histogram binning" inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation.
Resumo:
One of the prominent questions in modern psycholinguistics is the relationship between the grammar and the parser. Within the approach of Generative Grammar, this issue has been investigated in terms of the role that Principles of Universal Grammar may play in language processing. The aim of this research experiment is to investigate this topic. Specifically, this experiment aims to test whether the Minimal Structure Principle (MSP) plays a role in the processing of Preposition-Stranding versus Pied-Piped Constructions. This investigation is made with a self-paced reading task, an on-line processing test that measures participants’ unconscious reaction to language stimuli. Monolingual English speakers’ reading times of sentences with Preposition-Stranding and Pied-Piped Constructions are compared. Results indicate that neither construction has greater processing costs, suggesting that factors other than the MSP are active during language processing.